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Abstract 
 
The method chosen by CADES to steer the process of paying down the social security 

debt it has assumed is related to our particular asset and liability management policy. The 
economy is ruled by three factors, the dynamics of which govern the principal classes of 
negotiable debt instrument and our asset, which is the CRDS (Contribution au 
Remboursement de la Dette Sociale) and, partly, CSG (Cotisation Sociale Généralisée) joint 
taxes revenue, generated via a levy on nearly all forms and sources of income in France. 

 
Risk is defined as the probability that we will not achieve an acceptable performance 

level in terms of debt repayment capacity, while our aversion to risk is reflected in the 
convexity of the relationship between performance and the redemption horizon. 

 
We build projections of our balance sheet through the implementation of its 

components dynamics. As we formalize the amortizing process, we introduce the notion of 
amortizing capacity at the core of the expression which is the object of our optimization 
problem. 

 
Then we exhibit different subsets of portfolios, subject to a pre-defined rule of re-

balancing, in a two-axis space representing performance and risk respectively. Based on this 
representation, we define a direction of performance and risk optimization,  thereby managing 
to provide guidance concerning the matter of optimizing the debt portfolio structure. 

 
We finally describe the decision support tools which we have rolled out based on the 

results of the modeling, and which we have designed to provide guidance for debt allocation 
optimization. 

 
 

Keywords : refinancing, amortizing capacity, redemption horizon, direction of performance 
and risk optimization, risk threshold. 



 2/21

 
 
Introduction 

 
The role of CADES (Caisse d’Amortissement de la Dette Sociale) is to reimburse the 

accumulated deficits of the French social security or health insurance system. To this end 
initially, a single and exclusive resource has been allocated to CADES by law—the CRDS 
(Contribution au Remboursement de la Dette Sociale), to which a portion of the CSG 
(Cotisation Sociale Généralisée) was added by 2008 year-end. To respond to the following 
question—How can this debt be optimally repaid ?—we use our asset and liability 
management model.1 
 

The management of debt offers some striking analogies with the management of assets. 
For example, a company that insures a given fleet of risks receives premiums and constitutes 
a portfolio of invested assets. It builds this portfolio to maximize return so that it can meet its 
liabilities toward the policyholders, cover its own operating costs and generate a profit margin. 
Similarly, CADES receives tax proceeds which are used to cover debt service and redemption 
costs. 

 
Besides, while the taxable base fluctuates with the value of its components, the taxable 

base and rate are defined by law, and have not changed but once since the tax was first levied. 
Accordingly, we manage what might be considered a defined contribution plan, with the 
notion of contribution corresponding to tax inflows. Conversely, our liabilities are made up of 
the outflows by which we amortize the debt. 
 

While the modeling of our asset and liability management is largely inspired by the 
theoretical tools used in asset management, articles on the management of debt stricto sensu 
are rare, since this kind of analysis is primarily conducted by organizations that are 
responsible for “sensitive” debt, i.e., within a government’s public finance administration, a 
public service agency or a very large corporation. 
 

The research work that our modeling strongly resembles is that of Brennan and Xia 
(2002)[1]. The authors defined the optimal investment strategy within a universe that did not 
contain any instruments generating an inflation-indexed return, made up of a savings account, 
a risky asset, and nominal fixed coupon bonds. They demonstrated that, for an agent with a 
finite investment horizon T, in the presence of an unanticipated inflation component not 
hedged by a market instrument, the optimal portfolio is the sum of two portfolios : one 
providing the return most strongly correlated to that of an indexed bond with a maturity of T; 
the other being the minimum variance portfolio as intended by Markowitz (1959)[2], 
combining the risky asset and the savings account. 

 
Their findings revealed a strong sensitivity to agent risk aversion: the higher it is, (i) 

the higher the allocation to a portfolio replicating the indexed security, and (ii) the more the 
maturity of the nominal bond diminishes. 

 

                                                 
1 We would like to thank Jean-François Boulier for having encouraged us to publish this article. We would also 
like to thank the anonymous arbitrator(s) of Banque et Marchés for their work and their extremely useful 
comments, as well as Patrice Ract Madoux and Christophe Frankel for their insightful remarks. 
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In their study, they cite work done by Campbell and Viceira (1999)[3], whose thinking 
our own closely mirrors. The latter used a numerical method to solve the optimization of the 
strategy of an investor with no horizon limitation, operating in the same investment universe 
as Brennan and Xia, using a so-called myopic strategy, i.e., with constant proportions. By 
exhibiting an optimal solution in an analytic form, Brennan and Xia underscore the loss of 
value generated by the myopic strategy, as well as the sensitivity of the results to two 
characteristics of the model: the investment horizon and the mean return parameters of variate 
diffusion processes. 

 
A former article in Banque et Marchés (2004)[4] assesses methods for managing 

pension funds. We detected several points of contact with our own approach on the level of 
modeling the processes followed by the variates under study. In particular, that of Cairns 
(1998)[5] introduces a stochastic retirement flow into the modeling of a defined benefits fund. 
A retirement entitlement or pension is a fixed percentage of an individual’s wage, which the 
author models using a diffusion process that is not correlated with market noise. In addition, 
the analyses developed in articles by Svensson and Werner (1993)[6], as well as by Koo 
(1998)[7], resonate directly with our own reflection. Their authors examine the optimality of 
the portfolio and consumption in the case of an agent with a stochastic wage. They introduce a 
source of non-duplicable risk via a negotiable instrument, thereby placing the problem within 
a framework of market incompleteness. 

 
The rest of the article is structured as follows. We briefly review the regulatory 

framework that governs the functioning of CADES. Then, we describe our representation of 
the balance sheet in simple components, resulting in an economy regulated by three variates, 
the nominal short-term rate, the rate of inflation, and the rate of volume growth in the joint tax. 
Having written the diffusion equations followed by their processes, we explain our 
optimization problem and its resolution. We then display the decision support tools we have 
rolled out based on the results of the modeling. The last part of our paper is devoted to a 
critical review of the model and the changes envisioned, ending with a few conclusion on debt 
management informed by asset and liability management. 

 

2. Review 
 
Four texts mark the history of CADES:  
 

- The seminal text is the French ordinance dated January 24, 1996, which defines the 
mission of CADES (i.e., extinguish the French social security debt) and sets its life 
span (i.e., until January 31, 2009). Debt outstanding totals 21 billion euros, plus 
annual payments to the French government of 1.9 billion euros, over a period of 
twelve years. 

- The Social Security Financing Act (SSFA) of December 19, 1997 for year 1998 
extends the remit of CADES for an additional five years, and transfers an additional 
13.3 billion euros of debt.  

- The Health Insurance Act of August 13, 2004 transfers 35 billion euros worth of 
deficit accumulated through 2004 to CADES, to which is added estimated debt of up 
to but not more than 15 billion euros. The Act also strikes all reference to a defined 
date on which CADES ceases to exist and holds that all new deficits from the social 
security system must be financed by a new resource. In addition, the Parliament asks 
CADES to report twice a year on its most probable final year of operation. 
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- The 2009 SSFA of December 17, 2008 transfers an additional 26.9 billion euros of 
debt, and allocates an additional resource of 0.2% from CSG (Cotisation Sociale 
Généralisée), which is roughly equivalent to a 0.19% levy from CRDS. 

 
 

In what follows, we will illustrate the way CADES has tackled its asset and liability 
management issues in a changing environment due to regulatory amendments.  
 
 

3. Methodology 

3.1.  Balance-sheet modeling 
 
The CADES balance sheet can be broken down into four major items. The real estate 

holdings (assets) that were inherited when CADES was formed having been disposed of in 
full, its assets today consist of a receivable on the nationwide tax levied on nearly all sources 
of income (the CRDS), to which was added a portion of the CSG – with a quite similar 
taxable base. Its liability is financing debt, and it has no shareholders’ equity.  

 

3.1.1. Asset 

 
The taxable base for the CRDS is earned income from work (67%), replacement 

income (21%), income earned from assets and investments (10%), gaming proceeds and the 
proceeds from the sale of precious metals (2%). Similarly, the breakdown of the income base 
for the CSG is work income (67%), replacement income (20%), income earned from assets 
and investments (12%), gaming proceeds and the proceeds from the sale of precious metals 
(1%). 

 
To the extent that this joint tax is levied globally on all forms of income, a very 

straightforward way of modeling our revenue is to use gross available income, the national 
accounting aggregate, as a proxy for the taxable base. Another option would be to model 
separately transfer and wage income, asset and investment income, and assimilate growth in 
the remainder to a random walk. We opted for the most straightforward solution, noting that 
the taxable base has undergone numerous changes as well as various specific exemptions, and 
there is no reason to believe this will end : any advantage to be gained through more refined 
modeling by income category should be put into proper perspective considering the 
fluctuations due to changes in scope.  

 
The next question, then, is to model the rate at which these income inflows grow, 

using a constant tax rate (0.69%). If we focus on the three most significant sources of revenue 
in the taxable base, we see that wages and old age income have experienced quasi-constant 
volume growth over the 1979-2001 period. Over the same period, investment income has 
undergone volume growth that can be assimilated to a trend growth plus a white noise.  

 
A fairly simple modeling of our assets is based on diffusion equations for two 

processes, the real rate of growth in our tax revenue and the rate of inflation. They follow 
Ornstein-Uhlenbeck processes. The value growth of our asset is calculated through the 
composition product of the latter. 
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At time t, we note tA  the value of the asset, tk  its value growth rate, tg  its real 

growth rate and ti  the rate of inflation. 
 

The dynamic of tA  is described by the following diffusion equation  
dtkAdA ttt =  

 
And its rate of value growth is modeled by  

( )dtigdtk ttt ee +=  
 

The diffusion equations followed by these rate processes will be developed further on.  

3.1.2. Net debt dynamic 
 

Net debt varies in the following manner: at the end of each year, we note the balance 
between CRDS revenue received and outflows, either interest paid on outstanding debt, or 
additional new debt. If this balance is positive, we reduce the debt through buy-backs. If it is 
negative, then we must increase the level of our borrowings. By “financing balance,” we 
mean the change in net debt after employment of this balance, and we note it tS . In what 
follows, it will also be referred to as “amortization capacity”.  
  

To elucidate the net debt dynamic, we adopt the following notations : 
 
let, 

- 
^

tL  the value of the debt payable year t, 
- t

tL 1−  the value in current euros in t, of the inherited debt for year t – 1 before 
payments falling due , 
- *

tL  debt at end of year t before reallocation  
- tL  the value in current euros in t, of net outstanding  

 
The net debt dynamic is written in simple fashion 

ttt SLL −= −1  
Net debt observed for year t, before payables arriving at maturity, is the sum of debt 

payable in t and debt at end of year t before reallocation, which is written as:  
*

^

1 tt
t
t LLL +=−  

We can show that net debt at end of year t after reallocation is written  
net
ttt SLL −= *                                                       (1) 

where net
tS  designates the balance net of financing, i.e. the balance tS  that is modified by the 

effects of time and market fluctuations on the inherited debt from year t – 1, as well as 
payables arriving at maturity. 
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Proof  
 

Indeed, the net balance reads  

( )t
tttt

net
t LLLSS 11

^

−− −−−=      (2) 
The financing balance is derived by calculating tD , the amount available at time t, 
expression in which tV  designates an eventual new inflow of debt and ct designates 
operating costs  

tt

duk

tt cVAD

t

t
u

−−
∫

= −
−

1exp4  
 

If the value of debt was reduced owing to  market fluctuation, then the financing 
balance is increased, and vice versa. Accordingly, we add to tD , the opposite of this 
change in value, i.e. t

tt LL 11 −− − , to derive tS  
( )t

tttt LLDS 11 −− −+=      (3) 
The net balance is then written as  

^

tt
net
t LDS −=      (4) 

so that net debt dynamic can be written as 
( )t

ttttt LLDLL 111 −−− −+−=  

tttt DLLL −+= *
^

 
which, in accordance with (4), gives back equation (1)  

 
 

The net balance net
tS  is given by (4). Depending on its sign, it represents either a 

financing capacity or a borrowing need. It constitutes the total of buy-backs or taps (at the 
initial proportions) of existing bonds at their price, measured in t.  
 

3.1.3.  Liability 

 
Our liabilities are almost exclusively limited to our debt portfolio. CADES does not 

have shareholders’equity.  
 
Debt is classified according to three types: fixed-rate instruments, bonds pegged to 

French inflation (in France, inflation excluding tobacco), and floating rate instruments, 
including medium term notes. The factors which rule liabilities are nominal interest rates and 
the rate of inflation.  

 
We specify a Vasicek[8] model for the yield curve. It offers the dual advantage of 

integrating a mechanism of return to the mean and of allowing us to rebuild the entire curve 
from the short-term interest rate alone. It reflects a characteristic that has been demonstrated 
by econometric studies, i.e., the fact that changes in the short-term interest rate alone explain 
about 80% of all yield curve movements.  
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The variates that rule liabilities are finally, the short-term interest rate and the rate of 
inflation.  
 
 

3.2. Processes assumed by relevant variates 
 
The nominal short-term interest rate process is described by the following SDE 

(Stochastic Differential Equation) 
 

( ) ( )( ) ( )tdWdttrbatdr rrσ+−=  
 

The formulation of the zero-coupon rate for the [t,T] period is 
 

( ) ( ) ( ) ( )( ) ( )( ){ }2

4
111, 2

2 tTa
a

tTa eerR
tTa

RrtTR r −−−−
∞∞ −−−−

−
−=− σ  

 
The inflation rate process is described by an SDE  that is identical to that of the short-

term rate  
( ) ( )( ) ( )tdWdttidctdi iiσ+−=  

While the growth rate of the CRDS in volume terms is described by the following 
diffusion equation 

( ) ( )( ) ( )tdWdttgmtdg ggσ+−=  
The three sources of risk, the Brownian motions rW , iW , gW , are linked by their 

instantaneous cross-correlations ir ,ρ , ig ,ρ , rg ,ρ , respectively. 
 
One has to transform this vector of Brownian motions into a new vector of 

uncorrelated Brownian motions. This is obtained by transforming the covariance matrix of the 
initial vector into a triangular matrix. In a 2-dimension case, applying the copula theory to the 
2-dimension vector of the first Brownian motions rW and iW  for instance, would yield the 
same transformation. 

 
The dynamics of both the short-term interest rate and the inflation rate processes can 

be re-written as 
( ) ( )( ) ( )tdWdttrbatdr rrσ+−=  

 
( ) ( )( ) ( ) ( )tdZtdWdttidctdi iiirriir σρσρ 2

,, 1−++−=  

where rW , iZ are uncorrelated Brownian motions. 
 

The dynamic of the CRDS growth rate in volume terms is re-written using the same 
technique, but will not be shown here because of the length of the SDE. 
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4. The Optimization Problem 

4.1.  Formalization 
 
The financing balances that are accumulated year after year will determine our 

capacity to amortize the debt. By iterating the dynamic equation of the net debt, we see that 
the change in the latter between years 0 and t is equivalent to the accumulated financing 
balance for each period. Optimizing the amortization of the debt can be written, as a first 
approach, as the maximization of the expected aggregate of annual financing balances.  

 
The optimization program is written as follows  

⎥
⎦

⎤
⎢
⎣

⎡
Ε ∑

=

t

l
lS

0
 max  

 
The solution (or solutions) of the optimization program consists (or consist) of 

portfolio weightings. The result depends in particular on the re-balancing rule that is adopted. 
We have opted for the rule of reallocating each portfolio by maintaining the initial proportions, 
which is tantamount to seeking target portfolio structures that are maintained constant 
throughout the term of the mandate. We will note ( )mk ,ϖ  the vector of the debt weightings for 
each class, flagged by the index k, and for each maturity, flagged by the index m.  

 
Indeed, we are trying to determine one (or more) structure(s) which, over the long 

term, enables us to achieve our objective—i.e., that of paying down the debt at the lowest 
possible cost to the taxpayer. In the context of a debt management strategy to be carried over 
a long period, and which we want to be as transparent as possible, choosing the constant 
proportion rule allows us to present (for example, to the ministries with supervisory power 
over CADES) optimal debt structures that in essence do not fluctuate along with future events.  

 
Since the debt is transcribed in a portfolio of zero-coupon bonds, all refinancing or 

buy-back transactions are carried out at going market rates, which, like tS  and net
tS , are 

measurable in t.  
 
We will note ( )tE mk ,  the final value of a given outflow paid on the k–th class of debt 

with maturity m, and mtB ,  the price at time t of a zero-coupon bond of maturity m.  
 
When the net financing balance is allocated, the current value of the debt becomes 

net
ttt SLL −= *  

[ ]∑∑
=

−

=

+
−=

K

k

tM

m

net
tmkmkmtt SEBL

1 1
,,, ϖ  

where, for a given term X, X+ designates the positive part of X. 
  
 
Indeed, if the portion of the balance allocated to the amortization of outstanding debt 

( )tE mk ,  exceeds the market value of the latter calculated year t, this outstanding will be 
redeemed in full, and the remainder will be added to the remaining available balance. 
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The debt amortization mechanism entails that, the year in which the net debt crosses 
the null value, the financing balance is positive and exceeds the current value of the debt 
observed and recorded at the end of the preceding year. This allows us to represent our 
optimization program under a dual form.  
 

4.2.  Dual form of the optimization program  
 
We will briefly leave behind the particular case of CADES and take a look at the 

“stylized” case of an indebted corporation, that is ordered by its shareholder to pay off its 
borrowings, by allocating all of its operating revenues to repayment. This corporation’s 
guarantor of last resort is the State.  

 
Let’s suppose that the corporation has made a commitment to the financial community 

to a probable date of full repayment H, and that its last borrowing falls due on this date. There 
are two possible outcomes on date H :  

 
- either the corporation has correctly estimated the full debt reimbursement 

date and will have it repaid in full or even earlier, which translates as 
( ) ( )1−Ε≥Ε HH LS  

- or the corporation has underestimated the full debt reimbursement date, in 
which case 

( ) ( )1−Ε<Ε HH LS  
In the event of the second outcome, the corporation runs the risk of seeing its 
credit rating downgraded, and of finishing repayment on a date that is later 
than the estimated date of full repayment.  
 

Let’s look more closely at outcome number two: underestimating the amortization 
period means that the corporation’s financing requirement is ( )HH SL −−1 , which in turn 
requires either re-borrowing on less appealing credit and liquidity terms or turning to the 
guarantor of last resort to “absorb” the financing requirement.  

 
The envisioned consequences of this outcome do not exist for CADES. Indeed, the 

agency enjoys the implicit backing of the State, and its revenues are levied on and taken from 
the national income. However, risk analysis via the reimbursement horizon is valid, and 
allows us to express the probability α  that the reimbursement target will not be met, as a 
function of the risk quantile H (α ), in the following manner  

 
( ) ( )( )01 <−Ρ= −ααα HH LS  

 
Accordingly, we can write our optimization problem as the minimization of a risk, in 

the form  
( ) ( )( )0 min 1 >−Ρ − αα HH SL  

 
We do not know the analytic form of the probability density of the variate  

t
ttt LSX 1−−= , conditional upon ( )tℑ  filtration - filtration engendered by brownian motions 

( )tWr , ( )tWi , ( )tWg . The presence of time increment t – 1 within the expression of tX  shows 
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the « path-dependency » of tX , and that of its probability density. The expression of the latter 
might not be trivial.  

  
Nevertheless, we can simulate drawings into the conditional probability distribution of  

ttS ℑ . This is what is done in the course of our resolution process.  
 

4.3.  Estimator of the expected amortization capacity  
 

The conditional probability density of tX  thus depends on the level that has been 
reached by this variate on date t. Starting from an initial level of debt 0L  at the beginning of 
year 0, tX  depends on the level reached by the aggregate balances between years 0 and t, 
noted ( )tS c ,0 , i.e., of the event  

( )
⎭
⎬
⎫

⎩
⎨
⎧

== ∑
=

t

l
l

c xStS
0

,0  

 
Our risk of failure, defined in the preceding paragraph as the risk of not achieving 

reimbursement by horizon H(α ), grows with the decrease in x. The lower the aggregate 
balances, the more difficult it will be to reimburse before due date. 

 
In like manner, we can use the same reasoning, considering the average annual 

balance (or the average annual amortization capacity) instead of the accumulated or aggregate 

balances for the period between years 0 and t, that we note
_
S and calculate as follows 

 

( )tS
t

S c ,01_

=  

As a matter of fact, the 
_
S  statistic is a monotonicous function, strictly increasing, of 

the accumulated financing balances over the period extending from years 0 and t, scaled by a 

factor equal to 
t
1 . For a given initial debt, the lower the average annual amortization capacity, 

the farther the reimbursement horizon will be. 
_
S  is our estimator of the expected annual 

amortization capacity.  
 
In the example that follows, of an initial debt of 100 billion euros reimbursed over 15 

years, we illustrate the relationship between the level reached by 
_
S , as observed at the end of 

the period, and the reimbursement horizon. 
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Reimbursement and annual amortizing capacity
an example
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4.4.  Risk aversion 
  

At the same time, the statistic 
_
S  is a decreasing function of horizon t, with a convex 

shape. The convexity of this function evidences CADES’s aversion to risk. Indeed, we can 
write that, below some threshold of the annual amortization capacity achieved over the period, 
the lower the average annual amortization capacity the  greater the increase in the amortizing 
period, for a deterioration in the capacity of the same magnitude. 

 
Accordingly, there is a region of risky values that we wish to avoid, both for the 

accumulated balances between 0 and t and, likewise, for the average annual amortization 
capacity. The occurrence of such values, at the risk level α (%) at time t, entails the exploding 
trend of the reimbursement horizon.  

 
 

4.5.  The risk as seen from the perspective of the investor/taxpayer  
 

To shed additional light on the risks we run, we look at the problem from the 
perspective of an investor who holds CADES debt and is a taxpayer a tthe same time.  

 
Let us posit ourselves in the year H, our stated probable reimbursement horizon. Let us 

further suppose that the investor/taxpayer in question was holding a CADES bond reimbursed 
at horizon H, that CADES was obliged to issue a new bond to repay the bondholders, and that 
the investor reinvested in the new issue. The wealth of this investor, including taxes levied, 
will be reduced.  

 
Indeed, assuming that the decision to postpone the date of final reimbursement does 

not have any impact on the credit spread, the investor will earn the same interest when the 
reinvestment is made, which is the yield on a CADES security. But he will be liable for an 
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additional tax levy over a longer period due to the gap between the horizon estimated on date 
0 and that which will in fact come to pass. 

 
The analysis may be made from another angle : the Social Security Financing Act that 

was passed in August 2004 requires that all deficits be offset by additional tax revenue so as 
to maintain unchanged the date on which reimbursement is completed. Instead of bearing an 
extension of the contribution, the investor would be taxed “up front” for the resources needed 
to meet the financing needs of CADES on date H.  

 
His profit/loss profile is that of a put selling position, the loss growing with the 

magnitude of the error of estimation committed with respect to the reimbursement horizon. 
 
This analysis sheds light on the importance of the level of probability α . The more 

averse we are to the risk of making a mistake on the reimbursement horizon, and the 
consecutive one of having to resort to levying additional tax, the more we will require that α  
be small.   
 

4.6.  Optimality criterion 
 

The selection of an optimality criterion is one of the pillars supporting any 
optimization program. Our variate under study, the expected annual financing balance, 
constitutes a gross performance measure. It is inadequate in that it evacuates from the 
criterion the impact of the risk, whose importance we have measured, and does not take into 
consideration CADES’ aversion to risk. Accordingly, we need to use a risk-adjusted 
performance measurement as our criterion.  

 
At a time before the regulatory amendments aforementioned, when the reimbursement 

horizon was fixed, we were focused on the net financial position measured at this horizon. We 
used to compute the distribution of this variable, such as simulated at this fixed horizon. The 
risk-adjusted performance measurement we used was a Sharpe ratio, calculated over this 
distribution. The intermediate values reached by the variate under study was not the matter.  

 
Within the new context that has emerged since the initial end date assigned to CADES 

was withdrawn – i.e., the initial end date set forth in the decree of December 19, 1997 for the 
social security financing act for 1998—we stop the dynamic of the annual financing balance 
process in the period where the net financial position becomes positive. For a given debt 
structure, we calculate the expected annual balance for each drawing, thereby computing its 
simulated distribution. 

  
Next, we need to adjust this gross performance for risk, so that we can get an idea of 

the quality of the distribution. Indeed, an effective strategy must both optimize the expected 
annual balance and reduce the previously defined risk, to which we are averse.  

 
We use the following criterion 

( ) ( )tt SkS σ−Ε  
 

This criterion rewards strategies that optimize the expected annual balance and 
penalizes those that allow a large dispersion. According to the strong law of large numbers, if 
we postulate that the distribution of the expected annual balance is Gaussian, 5% of the 
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distribution stands outside the radius interval 1.96 ( )tSσ  centered in ( )tSΕ . We use this value 
for k, which is typically rounded off to 2.  

 

4.7.  Solving method 
 

Using target portfolios, we bring up the debt portfolio structures that turn out to be 
optimal under the vast majority of scenarios, assuming that a given portfolio is reallocated 
systematically according to the weights of its initial structure with each refinancing or buy-
back transaction. By doing this, we follow the method that was popularized in particular by 
Black and Perold (1992) [9], called CPPI (Constant Proportion Portfolio Insurance).  

 
We use the Monte Carlo method to simulate scenarios and numerically construct the 

distribution of the results for each debt structure under the aforementioned method of 
reallocation. For this, we discretize the asset and liability dynamics following the Euler 
diagram, re-balancing each portfolio with its starting proportions.  

 
Our optimization process entails, first of all, choosing the acceptable level of risk 

based on the simulated results profiles for the various eligible portfolios, including the current 
debt portfolio. The variate presented above, i.e. the annual amortization capacity, is a “good” 
test statistic. It allows us to build the following decision rule:  
 

- if  the annual amortization capacity is greater than the fractile αT , we accept the 
strategy, 

- if the annual amortization capacity is less than the fractile αT , we reject the 
strategy. 

 
The probability level α (%) represents the risk of wrongly deciding that the strategy 

under consideration is admissible. 
 
Accordingly, we will decide that a debt strategy with an expected amortization 

capacity that is sufficient to achieve full amortization of the debt before horizon αH , with the 
risk α of making an error ; this risk is known as the « first-order » risk. 

 
If such an event comes to realization, the consequence of actually underestimating the 

amortization duration is an additional tax levied on the taxpayer. The convexity of the risk 
profile accentuates the gravity of this consequence, because the lower the level of the capacity, 
the greater the magnitude of the amortization period increase, for the same decrease in 
amortization capacity.  

 
Conversely, if the amortization period is overestimated, the consequence is less 

serious for the taxpayer, since the tax levied on the latter will be less than initially planned.  
 
Below, we represent the joint distribution of redemption horizon and amortizing 

capacity for CADES debt portfolio. The distribution of either variate can be divided into strata 
based on the cumulative frequency. The strata are thus delimited by the levels of cumulative 
probability: 0%; 5%; 10%, etc. This cumulative probability is precisely the notion of risk that 
was defined above.  
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Joint risk(*) distribution for CADES debt portfolio
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(*)risk is measured as the probability of staying below a level of amortizing capacity  
 
 
The graph shows, for some calculation date in 2008, that  CADES debt portfolio had 1 

chance over 2 of fulfilling its mandate in 13 years at most, and 1 chance over 20 of 
succeeding in 16 years at best.  

 
 

5. Decision support tools  
 

5.1.  Improvement and no-arbitrage axis 
 
 

Let our portfolio be represented in a two-axis space, as in the graph hereunder, where 
the X-axis bears performance, measured by annual amortizing capacity expectation, whereas 
risk, measured by the 5%-quantile of amortization capacity distribution - or CaaR(5%) -, is 
carried by the Y-axis. A move along the X-axis toward high values means a performance 
increase, and a move along the Y-axis toward high values means a risk decrease. Therefore, a 
move along the 2nd bisectional diagonal toward high values on both axes embodies the 
improvement direction. Conversely, the opposite and 1st diagonal stands for the no-arbitrage 
direction, for any move along this direction means that an improvement on one axis is 
annihilated by a step back on the other axis. 
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CADES debt in a performance/risk space
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5.2.  Performance and risk measurements  
 

The performance and risk measurements that we have opted to use are both customary 
and critical for determining an optimum. Looking at the graph in the preceding paragraph, 
when aiming for an optimum portfolio one would move along the improvement axis, toward 
the lowest part of the graph, and furthest to the right. 

  
However, this is not necessarily the portfolio that maximizes the optimality criterion 

we presented in the previous section. First, the fractile CAaR(α %) belongs to the “simulated” 
distribution of the annual amortization capacity. This may present distortions compared with a 
Gaussian distribution. Furthermore, the proposed criterion brings into play the standard 
deviation, square root of the second moment of the distribution. We know that it does not 
account for such distortions.  

 
At the same time, the optimality criterion presented offers the advantage of 

constituting a scale of measurement that will allow us to rank the various portfolios. 
 

5.3.  Analysis of risk  
 

5.3.1. Amortization profiles and dominance  
 

We perform risk analysis at the portfolio level. Indeed, each portfolio can be 
characterized by amortization profiles that are comparable for an equal level of risk. An 
amortization profile is simply the amortization path of the outstanding debt for a given 
portfolio structure, corresponding to the quantile of annual amortization capacity of risk 
α (%).  
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Below, we represent the amortization profiles of the current debt portfolio as of some 

calculation date in 2008, at different levels of risk.  
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A profile will be acknowledged as better than another for the same level of risk, if it 

crosses the X-axis corresponding to the null value of net debt sooner. The conventional 
conditions of stochastic dominance of the first and second order will be translated as follows: 
  

- a portfolio dominates another, in the sense of « first order dominance », if its 
profiles are better at every level of risk, 

- a portfolio dominates another, in the sense of « second order dominance », if its 
profiles are better at risk levels that are lower than or equal to 50 %. 

 
 
 

5.4.  Performance analysis 
 
5.4.1. Static analysis  
 
 
We have built two sub-sets of comparison portfolios : one subset, named “extreme 

portfolios”, contains extensions of the actual CADES portfolio, constructed by setting at 
100% one of its debt class, and the remaining debt classes at null ; the other subset is labelled 
“variational portfolios”, in which each one is built by stretching the actual portfolio, adding 
10% of one debt class portion of the outstanding, and substracting 10% from another debt 
class. 
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 Representing all these portfolios on one graph proves troublesome, for they may be 
scattered over the graph. So we build a plain criterion by adding up performance and risk 
indicators. We use this straighforward measure to rank the whole set of portfolios. It may be 
seen as another representation of our set of portfolios along the “improvement” direction. 

 
The graph shown hereunder displays the whole set of portfolios ranked from top to 

bottom according to this criterion. 
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5.4.2. Dynamic analysis  
 
When one compares the current debt from one date of calculation to another, it is 

useful to separate three effects. 
 
The debt portfolio is composed of securities that are subject to market variations. The 

parameters of the model, calibrated upon market prices and yields, change along with them. 
Accordingly, the simulations are subject to this effect from one evaluation time to the other. 

 
Next, it is necessary to separate the effect of a change in the nominal outstanding, 

from that of achieved transactions, i.e. a change of structure, which must be measured on a 
constant outstanding debt basis. This means we need to assess (i) the current debt portfolio 
with the new outstanding under the structure that prevailed before the transactions were 
completed—i.e., as if we had maintained the debt structure that prevailed on the date of the 
previous assessment, and (ii) this same current debt, but after completion of the transactions.  

 
The gap in performance measurements between two assessment dates, for the former 

debt on a constant structure basis, with the same outstanding, represents the effects of time, 
market fluctuations and, where applicable, new data (realized inflation index, realized CRDS 
an CSG joint tax inflows).  

 
For the same evaluation date, the gap between the measurements made while keeping 

constant the former structure, with different nominal outstanding, represents the effect of the 
change in the nominal outstanding.  
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Finally, for the same evaluation date, the gap in measurements made on the debt with 

the new nominal outstanding, between the old and the new structure, represents the effect of 
transactions. 

 
 
The table hereafter shows the breakdown of the performance measure for CADES debt 

portfolio between october and december 2008, into the 3 components stated before : 
 
- effect of market fluctuation and environment changes 
- effect of outstanding amount and life-to-maturity variation 
- effect of debt structure changes 
 
 

 october  
2008 

december 
2008 

december  
2008 

december  
2008 

 

 
Effect 

 
 

 
market 
change 

 
oustanding 

change and time-
decay 

 
debt structure 

change 

 

Outstanding 
(bn EUR) 

69,8 69,8 69.7 69.7  

performance 5.58 5.70 5.68 5.80  
      
 

 
 

6. Asset and liability management, and the model 
 

6.1.  Modeling assumptions and parameter values  
 

The fixed coupon debt class should benefit from positive or cyclical inflation, i.e., 
positively correlated to growth as well as to nominal rates. The results of the model will 
depend, at a first order, on the ( )reelg τ−  spread, with reelτ  designating the deflated nominal 
rate.  

 
More generally, if the assumptions of the model yield the generation of deflated rates 

ruling a given debt class, such that the spread described hereabove is positive for the greatest 
part of the borrowing phase, this debt class will be one of the best candidates, particularly in 
terms of the expected reimbursement capacity. 

 
The long-term trends, the eventual backward forces and, above all, the volatilities of 

factors, are therefore crucial for performance and risk measurement, as well as for the results 
of the optimization.  

 
At a second order, the results will depend on correlations between risk factors.  
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6.2.  Reallocation rules and optimality of resulting portfolios  
 
Whether we use a criterion like the utility of terminal wealth or one like the utility of 

inter-temporal wealth, the resolution of the optimization cannot be different: otherwise, the 
agency would have two solutions to achieve a single objective, one being necessarily less 
optimal than the other. The same by-absurd reasoning can be used if we compare our method 
of optimization, which may be described as empirical, and the analytic resolution method of 
the program formalized in section 4, with the help of optimal control tools. 

 
 
The refinancing/re-investment strategy adopted (of the CPPI type) leads us to integrate 

into the optimization program an a priori constraint. Such a constraint may be acceptable if it 
corresponds to a rule governing the operating process of the agency, or if it models its 
rationality in the future. For example, in the case of life insurance companies, rules for 
harvesting capital gains are integrated into the reinvestment strategy. 

 
In our case, this strategy apparently leads to a behavior that is not always optimal.  
 

6.3.  Model risk: some responses 
 
Unavoidably, the results are the product of the model’s fundamental assumptions, and 

of the initial conditions.  
 
To protect ourselves from model risk, we have recourse to the following actions:  
 
- performing simulations of the model on contrasting market configurations to the 

extent permitted by the data, 
- running regular simulations, 
- implementing sensitivity tests to shocks on one or the other of our fundamental 

assumptions, in order to control the response of the model, 
- developing alternative models 
 

6.4.  Contemplated changes 
 
 We have built other models, in particular a Vectorial Autoregressive Model within a 

purely econometric framework. We have also developed a quantitative model for the indexed 
debt, thanks to the work done by I. Toder (2004)[12],  based primarily on the article written 
by Jarrow and Yildirim (2002)[10].  

 
This model, written under the risk neutral probability measure, is still to be integrated 

within the modeling of our economy, which is under the real probability measure.  
 
Finally, we still need to solve dynamically the program defined in section 4 in order to 

find an optimal portfolio using optimal stochastic control techniques.  
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6.5.  Reflections on debt management 
 
As the schematic representation of our balance sheet demonstrates, we are mainly 

« asset sensitive ». It is possible for us to model our assets in a relatively straightforward way, 
over a sufficiently long horizon. This exercise is far more difficult for a number of other 
institutions and companies, either with respect to modeling a portion of their balance sheet, or 
because of their weaker ability to make long projections due to a fairly short business cycle 
(2-5 years). 

 
We can make full use of our asset and liability management capability to monitor debt 

allocation over a long time frame. If we compare ourselves to institutional investors such as 
life insurance companies that sell annuities, our balance sheet is in some respects a mirror 
image of theirs. Indeed, they invest in assets offering a return that is at least adequate to cover 
their policyholder retirement annuity liabilities, which are strongly indexed to wages. 
Whereas we issue inflation-linked bonds, among other instruments, and our asset grows 
roughly in line with wages. Our respective allocation processes seek to optimize a similar 
objective, of an opposite sign. 

 

7. Conclusion 
 

The nominal rate equal to our debt cost is related to its sustainable nature. The debt is 
sustainable as long as the total amount is at most equal to the sum of the discounted value of 
expected revenues. If the excess of debt nominal rate over the expected revenues rate of 
increase, exceeds an equilibrium value, the debt is no longer sustainable. Accordingly, 
gaining control over the expected future costs and the variability of the amortization is at the 
heart of debt management.  

 
To fulfill a request from the Parliament, it is up to this agency to estimate the date on 

which the debt will be fully reimbursed. This is one of the results that we assess with 
measured cautiousness, and report monthly to the Board of directors.  

 
As we saw in sub-section 4.7, the risk of underestimation in econometrics can be seen 

as a « first-order » risk, and is far more serious than the risk of overestimation. If this risk 
were to occur, it would lead to an additional cost to which CADES is, by definition, averse. 
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