基礎数理 I (問題)

- 問題1.次の(1)から(8)までの各間について、それぞれの選択肢の中から正しい解答を選んで、指定 の解答用紙の所定欄にその記号を記入せよ。なお、必要であれば(付表)に記載された数値を用いよ。 (40点)
 - (1)A、Bの2人が次のゲームを行うとする。

</レー/レ>

- a:1,2,3の数字が1つずつ書かれた3枚のカードをA、Bそれぞれが持っており、AとBは自分の カードの中からランダムに1枚を選ぶ。
- b: 選んだカードの数字が大きかったほうが、2人のカードの数字の合計を得点として得る。
- 2人が選んだカードの数字が同じ場合はお互い0点とする。
- c:一度使用したカードは破棄するものとし、カードがなくなるまで(3回)この勝負を続ける。

このとき、1回目の勝負終了後にAが得ている得点の期待値は 1 3回目の勝負終了後にAが得ている得点の期待値は である。

<①の選択肢>

- $(\mathcal{T}) \frac{5}{9}$
- (\checkmark) $\frac{2}{3}$
- (工) $\frac{8}{9}$
- (才) 1

- (π) $\frac{10}{9}$
- $(*) \frac{11}{9}$
- $(\mathcal{I}) \frac{4}{3}$
- (ケ) $\frac{13}{9}$
- $(3) \frac{14}{9}$

<②の選択肢>

- $(7) \frac{19}{6} \qquad (4) \frac{10}{3}$
- (ウ) $\frac{32}{9}$
- (エ) $\frac{23}{6}$
- (才) 4

- (π) $\frac{25}{6}$ (π) (π) $\frac{13}{3}$ (π) (π)
- $(\mathcal{F}) \frac{9}{2}$
- $(3) \frac{14}{3}$

TH-744-W/TITI	_											_	
其磁数理	1	٠	•	•	٠	•	٠	٠	•	٠	٠	')	

長さ1のテープを適当な場所で切断したのち、短いほうのテープを捨て、長いほうのテープ(長さ (2)Xとする)を再び適当な場所で切断した際の長いほうのテープの長さをYとする。Xは区間) の一様分布に、**Y** は区間 (の一様分布に従うことから、Y が $\frac{1}{2}$ 以上となる確率は である。

<①~④の選択肢>

- (\mathcal{T}) 0
- (イ) $\frac{1}{3}$ (ウ) $\frac{1}{2}$
- (\pm) $\frac{2}{3}$
- (オ) 1

- (\mathfrak{P}) $\frac{X}{4}$
- $(\ddagger) \frac{X}{3}$ $(\flat) \frac{X}{2}$
- $(\mathcal{F}) \frac{2X}{3}$
- (\exists) X

<⑤の選択肢>

- $(\mathcal{T}) \frac{1}{4}$
- (イ) $\frac{1}{3}$ (ウ) $\frac{1}{2}$
- (\pm) $\frac{2}{3}$

- (才) log 2
- (π) $\frac{1}{2}(1-\log 2)$ (π) (π) (π) (π) (π) (π) (π)

$$(\mathcal{I}) e^{-\frac{1}{2}}$$

- (f) $\frac{1}{2}(1-e^{-\frac{1}{2}})$ (g) g) g (g) g) g
- ある森に生息する野鳥 1,000 羽を捕獲し、目印のリングを付けた後、森に返した。数日後、再度野 (3)鳥を300羽捕獲して調査した結果、75羽に目印のリングが付いていた。目印のリングの付いた野鳥 の母比率を信頼係数90%で区間推定すると()であり、この森の) で 野鳥の総数を信頼係数 90%で 100 羽単位で区間推定すると(ある。なお、当該調査期間におけるこの森の野鳥の総数に増減がないものとする。 ①~④は、答えに最も近いものを以下の選択肢よりそれぞれ選べ。

<(1)②の選択肢>

- (7) 0.2089
- (1) 0.2180
- (ウ) 0.2275
- (エ) **0.2476**
- (オ) 0.2490

- (カ) 0.2510
- (キ) 0.2524
- (ク) 0.2725
- (ケ) 0.2820
- (3) 0.2911

<③④の選択肢>

- (7) 3,200
- (1) 3,400
- (ウ) 3,500
- (エ) 3,600
- (才) 3,700

- (カ) 4,000
- (‡) 4,200
- (ク) 4,400
- (ケ) 4,600
- (3) 4,800

(1)	分数 σ ²	の正規母集団から	ニナキさ 10	1の樗木を抽出1	7	次の結里を得た
(4)	ガ取り	ツ 正 規 耳 乗 凹 かり	ひろさんに	」の除平を畑田し	()	火い箱米を待た。

0.067 2.066 3.192 0.515 2.194 -0.727-0.547-3.537-1.6131.582

母分散 σ^2 の信頼係数95%における信頼区間は(2)と推定される。 1 ①および②の答えに最も近いものを以下の選択肢よりそれぞれ選べ。

<①の選択肢>

- (ア) 1.47
- (イ) 1.59
- (ウ) 1.68
- (エ) 1.80
- (才) 1.84

- (カ) 1.94
- (キ) 2.02
- (ク) 2.11
- (ケ) 2.18
- (3) 2.38

<②の選択肢>

- (ア) 9.38
- (**∀**) 11.12
- (ウ) 13.69
- (工) 14.45
- (オ) 16.96

- (カ) 17.15
- (キ) 17.70
- (ク) 21.31
- (ケ) 22.45
- (3) 27.50
- 分散 25 の正規母集団の母平均 μ について帰無仮説 H_0 : μ = 10 を対立仮説 H_1 : μ = 12 に対し有 (5)意水準 5%で右側検定を行う。このとき、第2種の誤りを犯す確率を1%以下に抑えるために必要 な最小の標本数は (1) となる。
 - (ア) 11
- (イ) 18
- (ウ) 25
- (エ) 33
- (オ) 46

- (カ) 57
- (キ) 68
- (ク) 82
- (ケ) 99
- (3) 115
- (6) ある保険契約において、1契約毎の1年間のクレーム件数は平均3のポアソン分布に従いクレーム 額は平均9の指数分布に従うことが分かっている。この保険に免責金額9を設定した時に、1つの 契約における年間での支払い対象となるクレーム件数が0となる確率は となる。

- $(\mathcal{T}) \ e^{-\frac{3}{e}} \qquad (\mathcal{A}) \ e^{-\frac{3}{e}} e^{-3} \qquad (\dot{\mathcal{T}}) \ e^{-\frac{3}{e}} 2e^{-3} \qquad (\mathbf{x}) \ e^{-\frac{3}{e}} + e^{-3} \qquad (\mathbf{x}) \ e^{-\frac{3}{e}} + 2e^{-3}$

- $(\mathcal{D}) \ e^{-\frac{e}{3}} \qquad (\ddagger) \ e^{-\frac{e}{3}} e^{-3} \qquad (\mathcal{D}) \ e^{-\frac{e}{3}} 2e^{-3} \qquad (\mathcal{D}) \ e^{-\frac{e}{3}} + e^{-3} \qquad (\exists) \ e^{-\frac{e}{3}} + 2e^{-3}$

ある化学実験を5回測定したところ以下の反応値を得た。 (7)

ここで、化学実験での反応は温度の一次式となることがわかっているものとする。

温度x	0	10	20	30	40
反応 y	18.2	22.3	27.0	31.3	34.2

上記データを用いると、YのXへの回帰直線はy= と表せる。 x +2 また、温度 X=35 に対する反応 Y の母平均の 99% 信頼区間を求めると となる。 (3) ①~③は、答えに最も近いものを以下の選択肢よりそれぞれ選べ。

<①の選択肢>

- (7) 0.35
- (イ) 0.39
- (ウ) 0.41
- (工) 0.44
- (オ) 0.49

- (カ) 0.51
- (キ) 0.53
- (ク) 0.56
- (ケ) 0.61
- $(\Box) 0.63$

<②の選択肢>

- (ア) 14.0
- (イ) 14.4
- (ウ) 15.4
- (エ) 16.0
- (オ) 16.4

- (カ) 16.8
- (キ) 17.8
- (ク) 18.4
- (ケ) 18.8
- (3) 19.6

<③の選択肢>

- (\mathcal{T}) (26.91, 38.59)
- (イ) (28.94, 36.56) (ウ) (29.44, 36.06)
- (\pm) (30.59, 34.91)

- (才) (31.05, 34.45)
- (カ) (31.07, 34.43)
- (‡) (31.08, 34.42)
- (ク) (31.26, 34.24)

- (ケ) (31.53, 33.97)
- (\exists) (31.58, 33.92)
- (8) 損失額を表す確率変数 X が平均 3 の指数分布に従うとき、 $VaR_{qqq}(X)$ = $TVaR_{qqq_0}(X) =$ 2 となる。

①および②の答えに最も近いものを以下の選択肢よりそれぞれ選べ。なお、必要ならば、 $\log 10 = 2.302585$ を用いよ。

- (ア) 12.3
- (イ) 12.8
- (ウ) 13.3
- (エ) 13.8
- (オ) 14.3

- (カ) 14.8
- (キ) 15.3
- (ク) 15.8
- (ケ) 16.3
- (\Box) 16.8

- 問題2. 次の(1)から(8)までの各間について、空欄にあてはまる解答のみを、指定の解答用紙の所定欄に記入せよ。なお、必要であれば(付表)に記載された数値を用いよ。(60点)
 - (1) 袋の中にカードが 3 枚入っており、それぞれ 0,1,2 の数字が書かれている。この袋の中からカードを 1 枚取り出して戻す操作を n 回繰り返したとき、取り出したカードの数字の和が偶数となる確率を p_n とする。 p_n を p_{n-1} で表すと、漸化式 p_n = ① p_{n-1} + ② が成り立つ。この漸化式を解くと p_n = ③ となる。
 - (2) 確率密度関数が

$$f(x,y) =$$
 $\begin{cases} a(x+y) & (x+y \le 1, x \ge 0, y \ge 0) \\ 0 & (その他) \end{cases}$ $(a:定数)$ である確率変数 X 、 Y がある。このとき $a =$ ① であり、 $E(X) =$ ② 、 $V(X) =$ ③ 、相関係数 $\rho(X,Y) =$ ④ である。

- (3) $Y = \sum_{i=1}^N X_i$ とし、 X_1, X_2, \dots, X_N は独立な確率変数とする。また、N は非負整数値確率変数で N = 0 のときはY = 0 とする。
 - (ア) N の確率分布を $P(N=k)=\binom{n}{k}p_1^k(1-p_1)^{n-k}$ ($0 < p_1 < 1$) ($k=0,1,2,\cdots,n$) とする。 X_i の確率分布を $P(X_i=k)=p_2^k(1-p_2)^{1-k}$ ($0 < p_2 < 1$) (k=0,1) ($i=1,2,\cdots$) とする。 このとき、確率変数Y の確率母関数 $P_Y(t)$ は、 n,p_1,p_2,t を用いて表すと、 $P_Y(t)=$ ① である。
 - (イ) N の確率分布を $P(N=k)=p_3(1-p_3)^{k-1}$ $(0 < p_3 < 1)$ $(k=1,2,\cdots)$ とする。 X_i は確率密度関数 $f(x)=\lambda e^{-\lambda x}$ $(x \ge 0, \lambda > 0)$ で与えられる確率分布に従うものとする。 このとき、確率変数 Y の積率母関数 $M_Y(t)$ は、 p_3,λ,t を用いて表すと、 $M_Y(t)=$ ② である。

(4)	平均、分散とも未知の正規分布 $N(\mu, \sigma^2)$ から n 個のデータ $x = (x_1,, x_n)$ が与えられたと 尤推定量を求めたい。
	対数尤度関数 $\log L(\mu,\sigma^2 x)$ $=$ ① ① であり、これを μ,σ^2 でそれぞれ微分すると
	$rac{\partial}{\partial \mu} \log L(\mu, \sigma^2 x) =$ ② 、 $rac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2 x) =$ ③ であるから、
	最尤推定量 $\hat{\mu}$, $\hat{\sigma}^2$ はそれぞれ、 $\hat{\mu}$ = $\boxed{4}$ 、 $\hat{\sigma}^2$ = $\boxed{5}$ である。
	(④および⑤は、 n , x_1,\ldots,x_n および n 個のデータの平均値 x を用いて答えよ。)

(5) ある会社は同じ合板を A 工場と B 工場で製造している。製品保証の実験のため耐久試験を行ったところ、製品の合板破壊時の平均圧力を測定した結果は以下の通りであった。

	標本数(個)	合板破壊時の平均圧力(kg/cm²)	標本標準偏差(kg/cm²)		
A 工場	10	7.5	0.38		
B 工場	15	7.8	0.33		

2つの工場の製品の合板破壊時の圧力の母分散は未知ではあるが等しいものとし、合板破壊時の圧力のデータは正規分布に従うものとする。

ここで、A 工場と B 工場における製品のそれぞれの合板破壊時の平均圧力 μ_1 , μ_2 に差があるといってよいか、「帰無仮説 $H_0:\mu_1=\mu_2$ 、対立仮説 $H_1:\mu_1\neq\mu_2$ 」として有意水準 5%で検定する。

A 工場および **B** 工場の合板破壊時の圧力の標本平均をそれぞれ \overline{X} , \overline{Y} とする。また、**A** 工場と **B** 工場の製品の合板破壊時の圧力の母分散の推定量を U^2 とすると、

$$T=rac{\overline{X}-\overline{Y}}{\sqrt{U^2(1/10+1/15)}}$$
は自由度 ① の t 分布に従い、棄却域は $|t|>$ ② である。

T の実現値t を計算するとt = ③ となるから、有意水準 5%において合板破壊時の平均圧力に差があると ④ 。

(②③は小数第5位を四捨五入せよ。また、④は「言える」、「言えない」のいずれかで答えよ。)

- (6) 小数点以下を四捨五入することで、測定値を最も近い整数値に丸めるとき、丸めの誤差X は区間 ① の ② 分布に従う確率変数とみなすことができる。また、n個の測定値をそれぞれ最も近い整数値に丸めるとき、丸めの誤差の平均 \overline{X} の平均は ③ であり、分散は ④ となる。さらにnは十分大きいと仮定して中心極限定理を利用すると、 \overline{X} の絶対値が $\frac{1}{\sqrt{3n}}$ を超えない確率は ⑤ である。
 - (⑤は小数第5位を四捨五入せよ。)
- (7) $X_1, X_2, ..., X_n$ をランダム標本とし、 $X_{(1)}, X_{(2)}, ..., X_{(n)}$ をその順序統計量とする。 このとき、小さいほうから r 番目の統計量を $X_{(r)}$ とし、その確率密度関数 $f_{(r)}(x)$ と平均 $E(X_{(r)})$ を求めたい。

まず、一般的に $X_{(r)}$ の分布関数 $F_{(r)}(x)$ は、元の標本の分布関数 $F_{x}(x)$ を用いて

$$F_{(r)}(x) = \sum_{i=r}^{n} \boxed{\qquad \qquad}$$

と表すことができる。

次に、元の標本が区間[0,1]の一様分布に従っているとしたとき、

$$f_{(r)}(x) = \begin{cases} \boxed{2} & (0 \le x \le 1) \\ 0 & (その他) \end{cases}$$

となり、

$$E(X_{(r)}) = \boxed{3}$$

となる。

(8) 確率過程 $\{X_s\}$ ($s \ge 0$) を標準ブラウン運動とする。s, t(s < t) に対して $E[X_s^2 \cdot X_t^2]$ の値を次のように求める。

$$E[X_{s}^{2} \cdot X_{t}^{2}] = E[X_{s}^{2} \cdot (X_{t} - X_{s} + X_{s})^{2}]$$

$$= E[X_{s}^{2}] \cdot E[(X_{t} - X_{s})^{2}] + 2E[X_{s}^{3}] \cdot E[(X_{t} - X_{s})] + E[X_{s}^{4}]$$

ここで、右辺の第1項目は分散を表わす記号Vを用いて、

$$E[X_s^2] \cdot E[(X_t - X_s)^2] =$$
 ① と書くことができることから、 $E[X_s^2 \cdot X_t^2] =$ ① $+2E[X_s^3] \cdot E[(X_t - X_s)] + E[X_s^4]$ と表わすことができる。

M(u) のn 階導関数を $M^{(n)}(u)$ と書くと、

 $E[X_s^4]$ は $M^{(n)}(u)$ を用いて ③ と書くことができることから、 $E[X_s^2 \cdot X_t^2]$ の値はs,tを用いて ④ となる。

(付表)

1. 標準正規分布表(上側 ε 点 $u(\varepsilon)$ から確率 ε を求める表)

	*=0	*=1	*=2	*=3	*=4	*=5	*=6	*=7	*=8	*=9
0.0*	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1*	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2*	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3*	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4*	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5*	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6*	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7*	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8*	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9*	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0*	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1*	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2*	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3*	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4*	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5*	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6*	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7*	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8*	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9*	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0*	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1*	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2*	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3*	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4*	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5*	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6*	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7*	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8*	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9*	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014

2. 逆標準正規分布表(確率arepsilonから上側arepsilon点u(arepsilon)を求める表)

	*=0	*=1	*=2	*=3	*=4	*=5	*=6	*=7	*=8	*=9
0.00*	∞	2,0002		27/79	2.6521	2 5750			2.4089	2.3656
		3.0902	2.8782	2.7478	2.6521	2.5758	2.5121	2.4573		
0.01* 0.02*	2.3263	2.2904	2.2571	2.2262	2.1973	2.1701	2.1444	2.1201	2.0969	2.0749
0.02*	2.0537	2.0335	2.0141	1.9954	1.9774	1.9600	1.9431	1.9268	1.9110	1.8957
0.03**	1.8808 1.7507	1.8663 1.7392	1.8522 1.7279	1.8384 1.7169	1.8250 1.7060	1.8119 1.6954	1.7991 1.6849	1.7866 1.6747	1.7744	1.7624 1.6546
	1.7507	1.7392	1.7279		1.7000	1.0934	1.0049	1.0/4/	1.6646	
0.05*	1.6449	1.6352	1.6258	1.6164	1.6072	1.5982	1.5893	1.5805	1.5718	1.5632
0.06*	1.5548	1.5464	1.5382	1.5301	1.5220	1.5141	1.5063	1.4985	1.4909	1.4833
0.07*	1.4758	1.4684	1.4611	1.4538	1.4466	1.4395	1.4325	1.4255	1.4187	1.4118
0.08*	1.4051	1.3984	1.3917	1.3852	1.3787	1.3722	1.3658	1.3595	1.3532	1.3469
0.09*	1.3408	1.3346	1.3285	1.3225	1.3165	1.3106	1.3047	1.2988	1.2930	1.2873
0.10*	1.2816	1.2759	1.2702	1.2646	1.2591	1.2536	1.2481	1.2426	1.2372	1.2319
0.11*	1.2265	1.2212	1.2160	1.2107	1.2055	1.2004	1.1952	1.1901	1.1850	1.1800
0.12*	1.1750	1.1700	1.1650	1.1601	1.1552	1.1503	1.1455	1.1407	1.1359	1.1311
0.13*	1.1264	1.1217	1.1170	1.1123	1.1077	1.1031	1.0985	1.0939	1.0893	1.0848
0.14*	1.0803	1.0758	1.0714	1.0669	1.0625	1.0581	1.0537	1.0494	1.0450	1.0407
0.15*	1.0364	1.0322	1.0279	1.0237	1.0194	1.0152	1.0110	1.0069	1.0027	0.9986
0.16*	0.9945	0.9904	0.9863	0.9822	0.9782	0.9741	0.9701	0.9661	0.9621	0.9581
0.17*	0.9542	0.9502	0.9463	0.9424	0.9385	0.9346	0.9307	0.9269	0.9230	0.9192
0.18*	0.9154	0.9116	0.9078	0.9040	0.9002	0.8965	0.8927	0.8890	0.8853	0.8816
0.19*	0.8779	0.8742	0.8705	0.8669	0.8633	0.8596	0.8560	0.8524	0.8488	0.8452
0.20*										
0.20*	0.8416	0.8381	0.8345	0.8310	0.8274	0.8239	0.8204	0.8169	0.8134	0.8099
0.21* 0.22*	0.8064	0.8030	0.7995	0.7961	0.7926	0.7892	0.7858	0.7824	0.7790	0.7756
0.22**	0.7722	0.7688	0.7655	0.7621	0.7588	0.7554	0.7521	0.7488	0.7454 0.7128	0.7421
0.23**	0.7388 0.7063	0.7356 0.7031	0.7323 0.6999	0.7290 0.6967	0.7257 0.6935	0.7225 0.6903	0.7192 0.6871	0.7160 0.6840	0.7128	0.7095 0.6776
0.25*	0.6745	0.6713	0.6682	0.6651	0.6620	0.6588	0.6557	0.6526	0.6495	0.6464
0.26*	0.6433	0.6403	0.6372	0.6341	0.6311	0.6280	0.6250	0.6219	0.6189	0.6158
0.27*	0.6128	0.6098	0.6068	0.6038	0.6008	0.5978	0.5948	0.5918	0.5888	0.5858
0.28*	0.5828	0.5799	0.5769	0.5740	0.5710	0.5681	0.5651	0.5622	0.5592	0.5563
0.29*	0.5534	0.5505	0.5476	0.5446	0.5417	0.5388	0.5359	0.5330	0.5302	0.5273
0.30*	0.5244	0.5215	0.5187	0.5158	0.5129	0.5101	0.5072	0.5044	0.5015	0.4987
0.31*	0.4959	0.4930	0.4902	0.4874	0.4845	0.4817	0.4789	0.4761	0.4733	0.4705
0.32*	0.4677	0.4649	0.4621	0.4593	0.4565	0.4538	0.4510	0.4482	0.4454	0.4427
0.33*	0.4399	0.4372	0.4344	0.4316	0.4289	0.4261	0.4234	0.4207	0.4179	0.4152
0.34*	0.4125	0.4097	0.4070	0.4043	0.4016	0.3989	0.3961	0.3934	0.3907	0.3880
0.35*	0.3853	0.3826	0.3799	0.3772	0.3745	0.3719	0.3692	0.3665	0.3638	0.3611
0.36*	0.3585	0.3558	0.3531	0.3505	0.3478	0.3451	0.3425	0.3398	0.3372	0.3345
0.37*	0.3319	0.3292	0.3266	0.3239	0.3213	0.3186	0.3160	0.3134	0.3107	0.3081
0.38*	0.3055	0.3029	0.3002	0.2976	0.2950	0.2924	0.2898	0.2871	0.2845	0.2819
0.39*	0.2793	0.2767	0.2741	0.2715	0.2689	0.2663	0.2637	0.2611	0.2585	0.2559
0.40*	0.2533	0.2508	0.2482	0.2456	0.2430	0.2404	0.2378	0.2353	0.2327	0.2301
0.41*	0.2275	0.2250	0.2224	0.2198	0.2173	0.2147	0.2121	0.2096	0.2070	0.2045
0.42*	0.2019	0.1993	0.1968	0.1942	0.1917	0.1891	0.1866	0.1840	0.1815	0.1789
0.43*	0.1764	0.1738	0.1713	0.1687	0.1662	0.1637	0.1611	0.1586	0.1560	0.1535
0.44*	0.1510	0.1484	0.1459	0.1434	0.1408	0.1383	0.1358	0.1332	0.1307	0.1282
0.45*	0.1257	0.1231	0.1206	0.1181	0.1156	0.1130	0.1105	0.1080	0.1055	0.1030
0.45*	0.1237	0.1231	0.1200	0.1181	0.1130	0.1130	0.1103	0.1080	0.1033	0.1030
0.47*	0.0753	0.0728	0.0702	0.0677	0.0652	0.0627	0.0602	0.0523	0.0552	0.0527
0.48*	0.0502	0.0476	0.0451	0.0426	0.0401	0.0376	0.0351	0.0377	0.0301	0.0276
0.49*	0.0251	0.0226	0.0201	0.0175	0.0150	0.0125	0.0100	0.0075	0.0050	0.0025

3. χ^2 分布表(自由度mの上側 ε 点 $\chi_m^2(\varepsilon)$ を求める表)

						ç				
m	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.0^4393	0.0^3157	0.0^3982	0.0^2393	0.0158	2.7055	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	0.2107	4.6052	5.9915	7.3778	9.2103	10.5966
3	0.0717	0.1148	0.2158	0.3518	0.5844	6.2514	7.8147	9.3484	11.3449	12.8382
4	0.2070	0.2971	0.4844	0.7107	1.0636	7.7794	9.4877	11.1433	13.2767	14.8603
5	0.4117	0.5543	0.8312	1.1455	1.6103	9.2364	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.8119	18.5476
7	0.9893	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	20.0902	21.9550
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.6660	23.5894
10	2.1559	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	23.2093	25.1882
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.7250	26.7568
12	3.0738	3.5706	4.4038	5.2260	6.3038	18.5493	21.0261	23.3367	26.2170	28.2995
13	3.5650	4.1069	5.0088	5.8919	7.0415	19.8119	22.3620	24.7356	27.6882	29.8195
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.0641	23.6848	26.1189	29.1412	31.3193
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	30.5779	32.8013
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.9999	34.2672
17	5.6972	6.4078	7.5642	8.6718	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185
18	6.2648	7.0149	8.2307	9.3905	10.8649	25.9894	28.8693	31.5264	34.8053	37.1565
19	6.8440	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823
20	7.4338	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
21	8.0337	8.8972	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011
22	8.6427	9.5425	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957
23	9.2604	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813
24	9.8862	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720
31	14.4578	15.6555	17.5387	19.2806	21.4336	41.4217	44.9853	48.2319	52.1914	55.0027
32	15.1340	16.3622	18.2908	20.0719	22.2706	42.5847	46.1943	49.4804	53.4858	56.3281
33	15.8153	17.0735	19.0467	20.8665	23.1102	43.7452	47.3999	50.7251	54.7755	57.6484
34	16.5013	17.7891	19.8063	21.6643	23.9523	44.9032	48.6024	51.9660	56.0609	58.9639
35	17.1918	18.5089	20.5694	22.4650	24.7967	46.0588	49.8018	53.2033	57.3421	60.2748
36	17.8867	19.2327	21.3359	23.2686	25.6433	47.2122	50.9985	54.4373	58.6192	61.5812
37	18.5858	19.9602	22.1056	24.0749	26.4921	48.3634	52.1923	55.6680	59.8925	62.8833
38	19.2889	20.6914	22.8785	24.8839	27.3430	49.5126	53.3835	56.8955	61.1621	64.1814
39	19.9959	21.4262	23.6543	25.6954	28.1958	50.6598	54.5722	58.1201	62.4281	65.4756
40	20.7065	22.1643	24.4330	26.5093	29.0505	51.8051	55.7585	59.3417	63.6907	66.7660
50	27.9907	29.7067	32.3574	34.7643	37.6886	63.1671	67.5048	71.4202	76.1539	79.4900
60	35.5345	37.4849	40.4817	43.1880	46.4589	74.3970	79.0819	83.2977	88.3794	91.9517
70	43.2752	45.4417	48.7576	51.7393	55.3289	85.5270	90.5312	95.0232	100.4252	104.2149
80	51.1719	53.5401	57.1532	60.3915	64.2778	96.5782	101.8795	106.6286	112.3288	116.3211
90	59.1963	61.7541	65.6466	69.1260	73.2911	107.5650	113.1453	118.1359	124.1163	128.2989
100	67.3276	70.0649	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612	135.8067	140.1695

4. F 分布表(分母の自由度n、分子の自由度mのF 分布の上側 ε 点 $F_n^m(\varepsilon)$ を求める表)

	4. Γ 分型表(分母の自由及 n 、分子の自由及 m の Γ 分型の工関 δ 点 Γ_n (8) を求める表)											
$\varepsilon = 0.050$					<u> </u>	${n}$						
n	1	2	3	4	5	6	7	8	9	10		
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959		
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855		
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644		
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351		
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600		
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365		
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472		
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373		
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782		
$\varepsilon = 0.025$												
	m											
n	1	2	3	4	5	6	7	8	9	10		
2	38.5063	39.0000	39.1655	39.2484	39.2982	39.3315	39.3552	39.3730	39.3869	39.3980		
3	17.4434	16.0441	15.4392	15.1010	14.8848	14.7347	14.6244	14.5399	14.4731	14.4189		
4	12.2179	10.6491	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047	8.8439		
5	10.0070	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811	6.6192		
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234	5.4613		
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232	4.7611		
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572	4.2951		
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260	3.9639		
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790	3.7168		
$\varepsilon = 0.010$					n	n						
n	1	2	3	4	5	6	7	8	9	10		
2	98.5025	99.0000	99.1662	99.2494	99.2993	99.3326	99.3564	99.3742	99.3881	99.3992		
3	34.1162	30.8165	29.4567	28.7099	28.2371	27.9107	27.6717	27.4892	27.3452	27.2287		
4	21.1977	18.0000	16.6944	15.9770	15.5219	15.2069	14.9758	14.7989	14.6591	14.5459		
5	16.2582	13.2739	12.0600	11.3919	10.9670	10.6723	10.4555	10.2893	10.1578	10.0510		
6	13.7450	10.9248	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761	7.8741		
7	12.2464	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188	6.6201		
8	11.2586	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106	5.8143		
9	10.5614	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511	5.2565		
10	10.0443	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424	4.8491		
$\varepsilon = 0.005$												
10												
n	1	2	3	4	5	6	7	8	9	10		
2	198.5013	199.0000	199.1664	199.2497	199.2996	199.3330	199.3568	199.3746	199.3885	199.3996		
3	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824	43.6858		
5	31.3328 22.7848	26.2843 18.3138	24.2591 16.5298	23.1545 15.5561	22.4564 14.9396	21.9746 14.5133	21.6217 14.2004	21.3520 13.9610	21.1391 13.7716	20.9667 13.6182		
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915	10.2500		
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138	8.3803		
8	14.6882	11.0424	9.5965	8.8051	8.3018	7.9520	7.6941	7.4959	7.3386	7.2106		
9	13.6136	10.1067	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411	6.4172		
10	12.8265	9.4270	8.0807	7.3428	6.8724	6.5446	6.3025	6.1159	5.9676	5.8467		

5. t分布表(自由度mの上側 ε 点 $t_m(\varepsilon)$ を求める表)

			8	9		
m	0.250	0.100	0.050	0.025	0.010	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8205	63.6567
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500