基礎数理 I · · · · · · · 1

基礎数理 I (問題)

問題 1 .	次の	(1)	から	(8)	までの各問について	, 7	それぞれの選択肢	の中から	ら正しい角	解答を選んで、	指定
	の解答	用紙	の所定	欄に	その記号を記入せよ。	なこ	お、必要であれば	(付表) [こ記載され	れた数値を用い	いよ。
	(40 点))									

(1)	ある野球選手の打球の飛距離は指数分布に	こ従い、その	全打球の	3分の1は20	メートル以内である
	という。この野球選手の打球の飛距離の	P均は	1)	である。また、	この野球選手の打球
	の飛距離が 100 メートルを超える確率は	2	である	。 ①および②の	答えに最も近いもの
	を以下の選択肢よりそれぞれ選べ。なお、	必要ならば、	$\log 2 =$	0.693147およ	3 = 1.098612
	を用いよ。				

<①の選択肢>

(ア) 48.33

(イ) 48.83 (ウ) 49.33 (エ) 49.83 (オ) 50.33

(カ) 50.83

(キ) 51.33 (ク) 51.83 (ケ) 52.33 (コ) 52.83

<②の選択肢>

(7) 0.051

(イ) 0.067

(ウ) 0.083

(エ) 0.100

(オ) 0.116

(カ) 0.132

(キ) 0.148

(ク) 0.165

(ケ) 0.181

(3) 0.198

(2)ある電話会社の携帯電話の通話料金は通話時間の分未満を切り上げて設定されている。その通話料 金は初めの2分までは定額で30円、3分以降は1分あたり10円ずつ加算されていく、という料金 体系となっている。通話時間が平均時間3分の指数分布に従うとき、通話1回あたりの通話料金の 平均値は となる。答えに最も近いものを以下の選択肢より選べ。

なお、必要ならば、 $e^{-3} = 0.716531$ を用いよ。

(ア) 36.77

(イ) 40.55 (ウ) 44.33

(エ) 48.11

(オ) 51.89

(カ) 55.67

(キ) 59.45

(ク) 63.23

(ケ) 67.01

(3) 70.79

(3)	3人組のアイドルク	ブループがある。	CDを1枚購入すると	、3 人のうち特定の	1人と握手できる握手	
	券が1枚付いてくる	5.				
	CD は十分に多い材	女数が発売されて	おり、各 CD には各。	人の握手券がそれぞ	れ等確率で封入されて	
	いるとする。既にな	2 人分の握手券を	持っている場合、残り	りの1人の握手券を	手に入れるために必要	
	な CD の購入枚数の	の期待値は	① となる。また	だ1枚も握手券を持	っていない場合、全員	
	と握手するために	必要な CD の購入	枚数の期待値は	② となる。		
	次に、各CD には名	各人の握手券がそ	れぞれ 1/2,1/4,1/4 の	雀率で封入されてい	るとする。まだ 1 枚も	
	握手券を持っている	ない場合、全員と	握手するために必要	なCDの購入枚数の	期待値は ③	
	となる。					
	①~③は、答えに	最も近いものを以	人下の選択肢よりそれ	ぞれ選べ。		
<(①の選択肢>					
	(<i>T</i>) 1.0	(イ) 1.5	(ウ) 2.0	(工) 2.5	(才) 3.0	
	(カ) 3.5	(キ) 4.0	(ク) 4.5	(ケ) 5.0	(3) 5.5	
<(②③の選択肢>					
	(T) 5.00	(1) 5.33	(ウ) 5.50	(工) 5.67	(才) 6.00	
	(カ) 6.33	(‡) 6.50	(ク) 6.67	(ケ) 7.00	(=) 7.33	
(4)	確率変数 $X_1, X_2,$	$,X_n$ は互いに独	中立で区間 [0,1] の一様	分布に従うものとす	ける。	
		い100 + +7 こ フェ	hat 2005 DII 1 よっ	フェ ひとひまか目 1		
	$\mathcal{L}(\mathcal{O}\mathcal{E}\mathcal{E}, \sum_{i=1}^{n} X_i)$	か100 を超える的	能率か 0.93 以上となる	らために必要な最小	のnの値を中心極限定	
	理を用いて求める。		となる。			
	(ア) 198	(イ) 201	(ウ) 204	(工) 208	(才) 211	
	(カ) 214	(キ) 217	(ク) 220	(ケ) 223	(3) 227	

(5) ある機器が故障するまでの時間 X は平均 μ (未知)の指数分布に従っているとする。その機器 n 個を t 時間観察したところ、観察時間内に故障が生じたのは m 個あって、それぞれが故障するまでの時間は x_1, \ldots, x_m であり、その他の n-m 個は t 時間経っても故障しなかった。故障までの平均時間

を最尤法により推定すると ① $\sum_{i=1}^{m} x_i +$ ② t となる。

$$(ア) \ 1 \qquad \qquad (イ) \ \frac{1}{m} \qquad \qquad (\dot{\neg}) \ \frac{1}{n} \qquad \qquad (x) \ \frac{1}{n-m} \qquad (オ) \ \frac{n}{m}$$

(カ)
$$\frac{n-m}{m}$$
 (キ) $\frac{m}{n}$ (ク) $\frac{n-m}{n}$ (ケ) $\frac{m}{n-m}$ (コ) $\frac{n}{n-m}$

(6) ある会社で新商品の好感度についてアンケートを取ったところ、100人中65人が好感を持てると答えた。この商品の好感度を信頼度95%で近似法を用いて区間推定すると信頼区間は ① となる。

次に 10 人を対象に同様のアンケートを取ったところ、6 人が好感を持てると答えた。この商品の好感度を信頼度 95%で精密法を用いて区間推定すると信頼区間は ② となる。①および② の答えに最も近いものを以下の選択肢よりそれぞれ選べ。なお、必要であれば $F_{10}^{12}(0.025)=3.37$ 、 $F_{8}^{14}(0.025)=4.13$ 、 $F_{14}^{18}(0.025)=3.29$ を用いよ。

<①の選択肢>

$$(\mathcal{T})$$
 $(0.5226, 0.7774)$ (\mathcal{A}) $(0.5326, 0.7710)$ (\mathcal{D}) $(0.5431, 0.7569)$ (\mathcal{L}) $(0.5565, 0.7435)$

(
$$\pm$$
) (0.5590, 0.7410) (\pm) (0.5622, 0.7398) (\pm) (0.5666, 0.7334) (\pm) (0.5715, 0.7285)

(f) (0.5832, 0.7168) (g) (0.5888, 0.7112)

<②の選択肢>

$$(ア)$$
 (0.2127, 0.8849) (イ) (0.2127, 0.9012) (ウ) (0.2285, 0.8849) (エ) (0.2285, 0.9012)

(
$$\pm$$
) (0.2490, 0.8520) (\pm) (0.2490, 0.8785) (\pm) (0.2590, 0.8849) (\pm) (0.2590, 0.9012)

(f) (0.2626, 0.8520) (\Rightarrow) (0.2626, 0.8785)

(7) ある地域において、ある日の翌日の天気はその日の天気のみによって決まるものとし、その確率分 布は次のようになっているものとする。

晴れの日の翌日が晴れとなる確率は0.6、曇りとなる確率は0.3、雨となる確率は0.1。

曇りの日の翌日が晴れとなる確率は0.3、曇りとなる確率は0.4、雨となる確率は0.3。

雨の日の翌日が晴れとなる確率は0.1、曇りとなる確率は0.3、雨となる確率は0.6。

また、この地域のある店では1日当たりの傘の売上本数がその日の天気に応じて次のようになっているものとする。

晴れの場合、売上は0本。

曇りの場合、売上本数は平均1のポアソン分布に従う。

雨の場合、 売上本数は平均5のポアソン分布に従う。

このとき、以下の①および②の答えに最も近いものを以下の選択肢よりそれぞれ選べ。

なお、必要であればe=2.718を用いよ。

- (1) 晴れの日の4日後の天気が晴れである確率は ① である。
- (2) ある日の店の傘の売上本数は4本で、その2日前の天気は雨であった。このとき「ある日」 の前日の天気が雨であった確率は ② である。

<①の選択肢>

- (7) 0.3646
- (イ) 0.3705
- (ウ) 0.3780
- (エ) 0.3824
- (才) 0.3892

- (カ) 0.3960
- (キ) 0.4008
- (ク) 0.4051
- (ケ) 0.4102
- (3) 0.4165

<②の選択肢>

- $(\mathcal{T}) 0.7422$
- (イ) 0.7481
- (ウ) 0.7517
- (工) 0.7572
- (オ) 0.7621

- (カ) 0.7686
- (キ) 0.7731
- (ク) 0.7790
- (ケ) 0.7852
- (3) 0.7901

無作為に抽出した契約者のクレーム件数 X は幾何分布 $P(X=n)=p(1-p)^n$ $(n=0,1,2,\cdots)$ に従 (8) い、このパラメータpは契約者ごとにばらつきがあり、区間[0.1,0.4]の一様分布に従う。契約者単 位の時系列で観察した場合、同一の契約者のpは同一であるとする。このとき、過去1年間で合計 7 件のクレームを起こした契約者の次年度のクレーム件数をビュールマンモデルにより推定した場 合の信頼度は ① であり、次年度のクレーム件数は ② 件と計算される。① および②の答えに最も近いものを以下の選択肢よりそれぞれ選べ。なお、必要ならば、 $\log 2 = 0.693147$ を用いよ。

<①の選択肢>

(ア) 0.152

(イ) 0.182 (ウ) 0.212 (エ) 0.242 (オ) 0.272

(カ) 0.728

(キ) 0.758

(ク) 0.788

(ケ) 0.818

 $(\exists) 0.848$

<②の選択肢>

(ア) 3.535

(イ) 3.735

(ウ) 3.935

(工) 4.135

(才) 4.335

(カ) 6.087

(キ) 6.287

(ク) 6.487

(ケ) 6.687

 (\exists) 6.887

問題2.	次の(1)から(8)までの各問について、空欄にあてはまる解答のみを、指定の解答用紙の所定欄に記入せよ。なお、必要であれば(付表)に記載された数値を用いよ。(60 点)
(1)	A,Bの2人が以下のルールに基づき、得点差が2点となるまで試行を繰り返す。 (ルール1) 袋の中には赤玉が1つ、白玉が2つあり、各試行において、後述する得点権のある者が1つ取り出しては戻す。 (ルール2) このゲームには得点権がある。 ・赤玉を取り出した場合:得点権を持つ者に1点加わり、同じ者が引き続き得点権を持つ
	・白玉を取り出した場合:得点権が相手に移り、両者に得点は入らない (ルール3) 開始時においては、 A,B の得点はともに 0 点で、かつ、得点権は A が持つ。 $P(t,X)$ を、「 A が t 点差で勝っており(t が負の場合は負けており)、得点権は A が持っている状態のときに X が勝つ確率」と定義する。 (i) $P(0,B)$ を $P(0,A)$ を用いて表すと、 $P(0,B)$ ① である。 (ii) 1 度目の試行による状態遷移の関係性及び(i)から、 $P(1,A)$ を $P(0,A)$ を用いて表すと、 $P(1,A)$ = ② である。 これらを用いて、このゲームで A が勝つ確率を求めると ③ となる。
(2)	確率変数 X_1, X_2 が互いに独立であって、それぞれの確率密度関数が、 $f_1(x) = xe^{-x} \qquad (x>0)$ $f_2(x) = e^{-x} \qquad (x>0)$ であるとする。 $Y = \min(X_1, X_2)$ の確率密度関数は、 $f_Y(y) = \boxed{1} \qquad (y>0)$
	$Z=X_1+X_2$ の確率密度関数は、 $f_Z(z)= $
(3)	確率変数 X が平均 0 、分散 σ^2 の正規分布に従うとき、 $\left X\right $ の平均は ① 、分散は ② となる。

(4)	X_1, X_2, \cdots は独立同一分布な確率変数列であり、各 X_k は $\{0,1,\cdots,9\}$ 上の一様分布に従う確率変数
	である。 $Y_n = \sum_{k=1}^n \frac{X_k}{10^k}$ と定義する確率変数 Y_n に対して、 $n \to \infty$ のときの極限分布について積率母
	関数を用いて考える。

各 X_k の積率母関数 $M_k(t)$ を求めると、 $M_k(t)=$ ① となる。 したがって、 $\tilde{X}_k = \frac{X_k}{10^k}$ としたとき \tilde{X}_k の積率母関数 $\tilde{M}_k(t)$ は、 $\tilde{M}_k(t)$ は、 $\tilde{M}_k(t)$ であることから、 Y_n の積率母関数 $N_n(t)$ を求めると $N_n(t)$ ② である。 テーラー展開を用いて式変形を行うと、 $n \to \infty$ のとき $N_n(t)$ の極限は ④ となる。これは、 ⑤ 分布に従う確率変数の積率母関数である。 (⑤は分布の名称及び平均・分散・区間などのパラメータを答えよ。)

- (5) 確率変数 X の確率密度関数が、 $f(x) = \frac{2x}{\theta^2}$ (0 < x < θ) である分布に従う母集団があるとし、X について 5 個の観測値 (0.6, 1.5, 0.8, 1.1, 1.3) が得られた。
 - (ア) θ の不偏推定量を標本変量平均 \overline{X} の実数倍 $a\overline{X}=\frac{a}{n}\sum_{i=1}^{n}X_{i}$ (a は正の実数) とすると、 a= ① であり、 θ の不偏推定値は ② となる。
 - (イ) θ^2 の不偏推定量を標本変量不偏分散 V^2 の実数倍 $bV^2=\frac{b}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$ (b は正の実数) とすると、b= ③ であり、 θ^2 の不偏推定値は ④ となる。
- (6) 箱の中に赤玉と白玉が合わせてn個入っている。(nは5以上の整数) 帰無仮説 H_0 を「箱の中の白玉が5個である」、対立仮説 H_1 を「箱の中の白玉が3個である」として、復元抽出により3個の玉を取り出して H_0 を検定することにし、取り出した3個の玉のうち白玉が1個以下であれば H_0 を棄却するものとする。

この検定において、第 1 種の誤りをおこす確率 p_1 の値をn を用いて表わすと p_1 = ① 、 第 2 種の誤りをおこす確率 p_2 の値をn を用いて表わすと p_2 = ② となる。ここで、 p_1 と p_2 の間に p_1 = 6 p_2 という関係が成り立っていたとすると、箱の中の玉の個数n の値は ③ となる。

(7) 1つのサイコロを180回投げたところ、1の目から6の目まで出た回数は以下の表の通りであった。

	1の目	2の目	3の目	4の目	5の目	6の目	合計
回数	25	38	32	28	26	31	180

この結果から、このサイコロが正常であるかどうかを有意水準 5%で検定する。そこで、「帰無仮説 H_0 : サイコロの目は等確率で出る」について、適合度の検定(χ^2 検定)を行う。

(①②は小数第2位を四捨五入して数値で答えよ。また、③は「言える」、「言えない」のいずれかで答えよ。)

長さlの線分の上にランダムにとった 2 点 X_1, X_2 間の距離を R とするとき、 R の積率母関数 $M_R(t)$ は ① である。 $M_R(t)$ をテーラー展開することにより t^n の係数を求めると、 ② であることから、 $E(R^n)$ は ③ となる。 なお、2 点 X_1, X_2 のとり方は 互いに独立であるものとする。

(付表)

1. 標準正規分布表 (上側 ε 点 $u(\varepsilon)$ から確率 ε を求める表)

	*=0	*=1	*=2	*=3	*=4	*=5	*=6	*=7	*=8	*=9
0.0*	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1*	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2*	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3*	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4*	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5*	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6*	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7*	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8*	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9*	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0*	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1*	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2*	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3*	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4*	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5*	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6*	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7*	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8*	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9*	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0*	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1*	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2*	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3*	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4*	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5*	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6*	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7*	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8*	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9*	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014

2. 逆標準正規分布表(確率arepsilonから上側arepsilon点u(arepsilon)を求める表)

	*=0	*=1	*=2	*=3	*=4	*=5	*=6	*=7	*=8	*=9
0.00*	∞	2,0002		27/79	2.6521	2 5750			2.4089	2.3656
		3.0902	2.8782	2.7478	2.6521	2.5758	2.5121	2.4573		
0.01* 0.02*	2.3263	2.2904	2.2571	2.2262	2.1973	2.1701	2.1444	2.1201	2.0969	2.0749
0.02**	2.0537	2.0335	2.0141	1.9954	1.9774	1.9600	1.9431	1.9268	1.9110	1.8957
0.03**	1.8808 1.7507	1.8663 1.7392	1.8522 1.7279	1.8384 1.7169	1.8250 1.7060	1.8119 1.6954	1.7991 1.6849	1.7866 1.6747	1.7744	1.7624 1.6546
	1.7507	1.7392	1.7279		1.7000	1.0934	1.0049	1.0/4/	1.6646	
0.05*	1.6449	1.6352	1.6258	1.6164	1.6072	1.5982	1.5893	1.5805	1.5718	1.5632
0.06*	1.5548	1.5464	1.5382	1.5301	1.5220	1.5141	1.5063	1.4985	1.4909	1.4833
0.07*	1.4758	1.4684	1.4611	1.4538	1.4466	1.4395	1.4325	1.4255	1.4187	1.4118
0.08*	1.4051	1.3984	1.3917	1.3852	1.3787	1.3722	1.3658	1.3595	1.3532	1.3469
0.09*	1.3408	1.3346	1.3285	1.3225	1.3165	1.3106	1.3047	1.2988	1.2930	1.2873
0.10*	1.2816	1.2759	1.2702	1.2646	1.2591	1.2536	1.2481	1.2426	1.2372	1.2319
0.11*	1.2265	1.2212	1.2160	1.2107	1.2055	1.2004	1.1952	1.1901	1.1850	1.1800
0.12*	1.1750	1.1700	1.1650	1.1601	1.1552	1.1503	1.1455	1.1407	1.1359	1.1311
0.13*	1.1264	1.1217	1.1170	1.1123	1.1077	1.1031	1.0985	1.0939	1.0893	1.0848
0.14*	1.0803	1.0758	1.0714	1.0669	1.0625	1.0581	1.0537	1.0494	1.0450	1.0407
0.15*	1.0364	1.0322	1.0279	1.0237	1.0194	1.0152	1.0110	1.0069	1.0027	0.9986
0.16*	0.9945	0.9904	0.9863	0.9822	0.9782	0.9741	0.9701	0.9661	0.9621	0.9581
0.17*	0.9542	0.9502	0.9463	0.9424	0.9385	0.9346	0.9307	0.9269	0.9230	0.9192
0.18*	0.9154	0.9116	0.9078	0.9040	0.9002	0.8965	0.8927	0.8890	0.8853	0.8816
0.19*	0.8779	0.8742	0.8705	0.8669	0.8633	0.8596	0.8560	0.8524	0.8488	0.8452
0.20*										
0.20*	0.8416	0.8381	0.8345	0.8310	0.8274	0.8239	0.8204	0.8169	0.8134	0.8099
0.21* 0.22*	0.8064	0.8030	0.7995	0.7961	0.7926	0.7892	0.7858	0.7824	0.7790	0.7756
0.22**	0.7722	0.7688	0.7655	0.7621	0.7588	0.7554	0.7521	0.7488	0.7454 0.7128	0.7421
0.23**	0.7388 0.7063	0.7356 0.7031	0.7323 0.6999	0.7290 0.6967	0.7257 0.6935	0.7225 0.6903	0.7192 0.6871	0.7160 0.6840	0.7128	0.7095 0.6776
0.25*	0.6745	0.6713	0.6682	0.6651	0.6620	0.6588	0.6557	0.6526	0.6495	0.6464
0.26*	0.6433	0.6403	0.6372	0.6341	0.6311	0.6280	0.6250	0.6219	0.6189	0.6158
0.27*	0.6128	0.6098	0.6068	0.6038	0.6008	0.5978	0.5948	0.5918	0.5888	0.5858
0.28*	0.5828	0.5799	0.5769	0.5740	0.5710	0.5681	0.5651	0.5622	0.5592	0.5563
0.29*	0.5534	0.5505	0.5476	0.5446	0.5417	0.5388	0.5359	0.5330	0.5302	0.5273
0.30*	0.5244	0.5215	0.5187	0.5158	0.5129	0.5101	0.5072	0.5044	0.5015	0.4987
0.31*	0.4959	0.4930	0.4902	0.4874	0.4845	0.4817	0.4789	0.4761	0.4733	0.4705
0.32*	0.4677	0.4649	0.4621	0.4593	0.4565	0.4538	0.4510	0.4482	0.4454	0.4427
0.33*	0.4399	0.4372	0.4344	0.4316	0.4289	0.4261	0.4234	0.4207	0.4179	0.4152
0.34*	0.4125	0.4097	0.4070	0.4043	0.4016	0.3989	0.3961	0.3934	0.3907	0.3880
0.35*	0.3853	0.3826	0.3799	0.3772	0.3745	0.3719	0.3692	0.3665	0.3638	0.3611
0.36*	0.3585	0.3558	0.3531	0.3505	0.3478	0.3451	0.3425	0.3398	0.3372	0.3345
0.37*	0.3319	0.3292	0.3266	0.3239	0.3213	0.3186	0.3160	0.3134	0.3107	0.3081
0.38*	0.3055	0.3029	0.3002	0.2976	0.2950	0.2924	0.2898	0.2871	0.2845	0.2819
0.39*	0.2793	0.2767	0.2741	0.2715	0.2689	0.2663	0.2637	0.2611	0.2585	0.2559
0.40*	0.2533	0.2508	0.2482	0.2456	0.2430	0.2404	0.2378	0.2353	0.2327	0.2301
0.41*	0.2275	0.2250	0.2224	0.2198	0.2173	0.2147	0.2121	0.2096	0.2070	0.2045
0.42*	0.2019	0.1993	0.1968	0.1942	0.1917	0.1891	0.1866	0.1840	0.1815	0.1789
0.43*	0.1764	0.1738	0.1713	0.1687	0.1662	0.1637	0.1611	0.1586	0.1560	0.1535
0.44*	0.1510	0.1484	0.1459	0.1434	0.1408	0.1383	0.1358	0.1332	0.1307	0.1282
0.45*	0.1257	0.1231	0.1206	0.1181	0.1156	0.1130	0.1105	0.1080	0.1055	0.1030
0.45*	0.1237	0.1231	0.1200	0.1181	0.1130	0.1130	0.1103	0.1080	0.1033	0.1030
0.47*	0.0753	0.0728	0.0702	0.0677	0.0652	0.0627	0.0602	0.0523	0.0552	0.0527
0.48*	0.0502	0.0476	0.0451	0.0426	0.0401	0.0376	0.0351	0.0377	0.0301	0.0276
0.49*	0.0251	0.0226	0.0201	0.0175	0.0150	0.0125	0.0100	0.0075	0.0050	0.0025

3. χ^2 分布表(自由度mの上側 ε 点 $\chi^2_m(\varepsilon)$ を求める表)

						ç				
m	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.0^4393	0.0^3157	0.0^3982	0.0^2393	0.0158	2.7055	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	0.2107	4.6052	5.9915	7.3778	9.2103	10.5966
3	0.0717	0.1148	0.2158	0.3518	0.5844	6.2514	7.8147	9.3484	11.3449	12.8382
4	0.2070	0.2971	0.4844	0.7107	1.0636	7.7794	9.4877	11.1433	13.2767	14.8603
5	0.4117	0.5543	0.8312	1.1455	1.6103	9.2364	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.8119	18.5476
7	0.9893	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	20.0902	21.9550
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.6660	23.5894
10	2.1559	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	23.2093	25.1882
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.7250	26.7568
12	3.0738	3.5706	4.4038	5.2260	6.3038	18.5493	21.0261	23.3367	26.2170	28.2995
13	3.5650	4.1069	5.0088	5.8919	7.0415	19.8119	22.3620	24.7356	27.6882	29.8195
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.0641	23.6848	26.1189	29.1412	31.3193
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	30.5779	32.8013
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.9999	34.2672
17	5.6972	6.4078	7.5642	8.6718	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185
18	6.2648	7.0149	8.2307	9.3905	10.8649	25.9894	28.8693	31.5264	34.8053	37.1565
19	6.8440	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823
20	7.4338	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
21	8.0337	8.8972	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011
22	8.6427	9.5425	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957
23	9.2604	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813
24	9.8862	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720
31	14.4578	15.6555	17.5387	19.2806	21.4336	41.4217	44.9853	48.2319	52.1914	55.0027
32	15.1340	16.3622	18.2908	20.0719	22.2706	42.5847	46.1943	49.4804	53.4858	56.3281
33	15.8153	17.0735	19.0467	20.8665	23.1102	43.7452	47.3999	50.7251	54.7755	57.6484
34	16.5013	17.7891	19.8063	21.6643	23.9523	44.9032	48.6024	51.9660	56.0609	58.9639
35	17.1918	18.5089	20.5694	22.4650	24.7967	46.0588	49.8018	53.2033	57.3421	60.2748
36	17.8867	19.2327	21.3359	23.2686	25.6433	47.2122	50.9985	54.4373	58.6192	61.5812
37	18.5858	19.9602	22.1056	24.0749	26.4921	48.3634	52.1923	55.6680	59.8925	62.8833
38	19.2889	20.6914	22.8785	24.8839	27.3430	49.5126	53.3835	56.8955	61.1621	64.1814
39	19.9959	21.4262	23.6543	25.6954	28.1958	50.6598	54.5722	58.1201	62.4281	65.4756
40	20.7065	22.1643	24.4330	26.5093	29.0505	51.8051	55.7585	59.3417	63.6907	66.7660
50	27.9907	29.7067	32.3574	34.7643	37.6886	63.1671	67.5048	71.4202	76.1539	79.4900
60	35.5345	37.4849	40.4817	43.1880	46.4589	74.3970	79.0819	83.2977	88.3794	91.9517
70	43.2752	45.4417	48.7576	51.7393	55.3289	85.5270	90.5312	95.0232	100.4252	104.2149
80	51.1719	53.5401	57.1532	60.3915	64.2778	96.5782	101.8795	106.6286	112.3288	116.3211
90	59.1963	61.7541	65.6466	69.1260	73.2911	107.5650	113.1453	118.1359	124.1163	128.2989
100	67.3276	70.0649	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612	135.8067	140.1695

4. F 分布表(分母の自由度 n 、分子の自由度 m の F 分布の上側 ε 点 $F_n^m(\varepsilon)$ を求める表)

$\varepsilon = 0.050$												
10					n							
n	10.5120	2	3	4	5	6	7	8	9	10		
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959		
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855		
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644		
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351		
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600		
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365		
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472		
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373		
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782		
$\varepsilon = 0.025$												
10	m											
n	1	2	3	4	5	6	7	8	9	10		
2	38.5063	39.0000	39.1655	39.2484	39.2982	39.3315	39.3552	39.3730	39.3869	39.3980		
3	17.4434	16.0441	15.4392	15.1010	14.8848	14.7347	14.6244	14.5399	14.4731	14.4189		
4	12.2179	10.6491	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047	8.8439		
5	10.0070	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811	6.6192		
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234	5.4613		
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232	4.7611		
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572	4.2951		
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260	3.9639		
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790	3.7168		
$\varepsilon = 0.010$												
10					n							
n	1	2	3	4	5	6	7	8	9	10		
2	98.5025	99.0000	99.1662	99.2494	99.2993	99.3326	99.3564	99.3742	99.3881	99.3992		
3	34.1162	30.8165	29.4567	28.7099	28.2371	27.9107	27.6717	27.4892	27.3452	27.2287		
4	21.1977	18.0000	16.6944	15.9770	15.5219	15.2069	14.9758	14.7989	14.6591	14.5459		
5	16.2582	13.2739	12.0600	11.3919	10.9670	10.6723	10.4555	10.2893	10.1578	10.0510		
6	13.7450	10.9248	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761	7.8741		
7	12.2464	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188	6.6201		
8	11.2586	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106	5.8143		
9	10.5614	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511	5.2565		
10	10.0443	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424	4.8491		
$\varepsilon = 0.005$												
n	1	2	3	1	n		7	8	9	10		
2	198.5013	199.0000	199.1664	4 199.2497	5 199.2996	6 199.3330	199.3568	199.3746	199.3885	10 199.3996		
	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824	43.6858		
3 4	31.3328	26.2843	24.2591	23.1545	22.4564	21.9746	21.6217	21.3520	21.1391	20.9667		
5	22.7848	18.3138	16.5298	15.5561	14.9396	14.5133	14.2004	13.9610	13.7716	13.6182		
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915	10.2500		
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138	8.3803		
8	14.6882	11.0424	9.5965	8.8051	8.3018	7.9520	7.6941	7.4959	7.3386	7.2106		
9	13.6136	10.1067	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411	6.4172		

6.3025

6.1159

6.5446

5.8467

5.9676

12.8265

9.4270

8.0807

7.3428

6.8724

5. t分布表(自由度mの上側 \mathcal{E} 点 $t_m(\mathcal{E})$ を求める表)

	ı					
			8	9		
m	0.250	0.100	0.050	0.025	0.010	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8205	63.6567
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500