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リスクの数理

確率空間 (Ω,F ,P).

· Ω ̸= ∅ : (標本)集合,

· F ⊂ 2Ω← 部分集合の族 : σ-加法族 (情報系) i.e.
(i) Ω ∈ F , (ii) A ∈ F =⇒ Ac ∈ F , (iii) Ai ∈ F (i ∈ N) =⇒ ∪i∈NAi ∈ F .

· P : F → [0, 1] : 確率測度 i.e. (a) P(Ω) = 1,

(b) Ai ∈ F (i ∈ N) with Ai ∩ Aj = ∅ (i ̸= j) =⇒ P(∪i∈NAi ) =
∑

i∈N P(Ai ).

用語 ω ∈ Ω : 標本, A ∈ F : 事象, P(A) ∈ [0, 1] : Aの確率.

解釈 Ωはこれから起こるシナリオ全体で, P はその確率である.
確率空間 (Ω,F ,P) は既知とする.

定義 (確率変数)

X : Ω→ R : 確率変数 def⇐⇒ X : F-可測 i.e.
X−1((−∞, a]) = {ω ∈ Ω | X (ω) ∈ (−∞, a]} ∈ F (a ∈ R).

解釈 確率法則 P に従って Ωの中から未知の標本 ω ∈ Ωが選ばれ,
それに従って実現値 (例えば会社の資産)X (ω)が観測される.



リスクの数理

X : Ω→ R : 確率変数 def⇐⇒ X : F-可測 i.e.
X−1((−∞, a]) = {ω ∈ Ω | X (ω) ∈ (−∞, a]} ∈ F (∀a ∈ R).

記号 L0(Ω) = L0(Ω,F) : 確率変数 X : Ω→ R 全体の集合.
←− 実ベクトル空間になる.

例 1 F = 2Ωのとき, 全ての関数 X : Ω→ Rは確率変数.

例 2 F = {∅,Ω}のとき, 確率変数 X : Ω→ Rは定数 X ≡ m.

実際, ω0 ∈ Ωを固定して m = X (ω0) ∈ Rとおく.

· ω0 ∈ X−1((−∞,m]) ∈ {∅,Ω}より, X−1((−∞,m]) = Ω.

· a < mのとき, ω0 /∈ X−1((−∞, a]) ∈ {∅,Ω}より, X−1((−∞, a]) = ∅.
X−1({m}) = X−1((−∞,m])− ∪a<mX

−1((−∞, a]) = Ω. ∴ X ≡ m.

記号 実数m ∈ Rと定数関数 X ≡ mを同一視する : R ⊂ L0(Ω).



リスクの数理

• (Ω,F ,P) : 確率空間, X : Ω→ R : 確率変数.

⇝ E [X ] =

∫
Ω

X (ω)P(dω) ∈ R : X の期待値.

期待値の性質

(1) E [aX + bY ]=aE [X ] + bE [Y ] (X ,Y : Ω→ R : 確率変数, a, b ∈ R).

(2) E [IA] = P(A) (A ∈ F). ただし, IA : Ω→ R,

IA(ω) =
{

1 (ω ∈ A)
0 (ω /∈ A).

• X ⊂ L0(Ω) : 線形部分空間 (考えられる確率変数全体).

例 X = Lp(Ω) = Lp(Ω,F ,P) = {X ∈ L0(Ω) | ||X ||p <∞} (p ∈ [1,∞]).

ただし, ||X ||p :=

{
E [|X |p]1/p (p <∞)

inf{r | P(|X | ≦ r) = 1} (p =∞).



リスクの数理

仮定 R ⊂ X .
確率変数 X ∈ X に対して, 1期間後のリスク ρ(X ) ∈ Rを与える.

定義 ((貨幣的)リスク尺度)

ρ : X → R : リスク尺度 (normalized monetary risk measure)
def⇐⇒

(0) (正規化条件 ) ρ(0) = 0.

(1) (単調性 ) X ,Y ∈ X , P(X ≦ Y ) = 1 =⇒ ρ(X ) ≧ ρ(Y ).

(2) (キャッシュ不変性 ) X ∈ X , m ∈ R=⇒ρ(X +m)=ρ(X )−m.

注 P(X ≦ Y ) = P({ω ∈ Ω | X (ω) ≦ Y (ω)}).

解釈 (1) 資産が多ければ, リスクは少なくなる.

(2) 安全資産があれば, その分リスクは少なくなる. ただし,
金利はゼロとする.



リスクの数理

リスク尺度の可視化

• ρ : X → R ⇝ Aρ := {X ∈ X | ρ(X ) ≦ 0} : 受容集合.

定義 (受容集合)

A ⊂ X : 受容集合 (acceptance set)
def⇐⇒

(0) A ∩ R = [0,∞).

(1) X ∈ A, Y ∈ X , P(X ≦ Y ) = 1 =⇒ Y ∈ A.
(2) X ∈ X =⇒ {m ∈ R | X +m ∈ A} ⊂ R : 閉集合 /∈ {∅,R}.

注 A(X ) := {m ∈ R | X +m ∈ A} = [mX ,∞) : 区間 (mX ∈ R).
∵) m0 ∈ A(X ), m ≧ m0 ならば, X +m ≧ X +m0 ∈ Aで X +m ∈ A
より, m ∈ A(X ). よって, 閉集合 A(X ) /∈ {∅,R}は [mX ,∞)の形の

区間である.



リスクの数理

ρ : X → R : リスク尺度 (normalized monetary risk measure)
def⇐⇒

(0) (正規化条件 ) ρ(0) = 0. 特に, ρ(m) = −m (m ∈ R).
(1) (単調性 ) X ,Y ∈ X , P(X ≦ Y ) = 1 =⇒ ρ(X ) ≧ ρ(Y ).

(2) (キャッシュ不変性 ) X ∈ X , m ∈ R =⇒ ρ(X +m) = ρ(X )−m.

A ⊂ X : 受容集合 (acceptance set)
def⇐⇒

(0) A ∩ R = [0,∞).

(1) X ∈ A, Y ∈ X , P(X ≦ Y ) = 1 =⇒ Y ∈ A.

(2) X ∈ X =⇒ A(X ) := {m ∈ R | X +m ∈ A} = [ρ(X ),∞).

補題

· リスク尺度 ρ : X → Rに対して, Aρ := {X ∈ X | ρ(X ) ≦ 0}は受容集合.

· 受容集合 A ⊂ X に対して, ρA : X → R, A(X ) = [ρA(X ),∞)はリスク尺度.

• {リスク尺度 } 1:1←→ {受容集合 }.



リスクの数理

A ⊂ X : 受容集合 (acceptance set)
def⇐⇒

(0) A ∩ R = [0,∞).

(1) X ∈ A, Y ∈ X , P(X ≦ Y ) = 1 =⇒ Y ∈ A.

(2) X ∈ X =⇒ A(X ) := {m ∈ R | X +m ∈ A} = [ρ(X ),∞).

例 Ω = {ω1, ω2}, F = 2Ω = {∅, {ω1}, {ω2},Ω}. X = L0(Ω,F).

X (ω1)

X (ω2)

O

A

注 dimX < ∞のとき, A ⊂ X が受容集合
⇐⇒ (0), (1) + (2)’ A ⊂ X が (ノルムに関する)閉集合.



リスクの数理

定義 (凸リスク尺度 (Convex Risk Measure))

リスク尺度 ρ : X → Rが凸リスク尺度
def⇐⇒ Aρ が凸 i.e. X ,Y ∈ Aρ, λ ∈ [0, 1] =⇒ λX + (1− λ)Y ∈ Aρ.

X (ω1)

X (ω2)

O

A
凸 ×

X (ω1)

X (ω2)

O

A
凸 ◦



リスクの数理

命題 (同値条件)

(1) Aρ が凸 i.e. X ,Y ∈ Aρ, λ ∈ [0, 1] =⇒ λX + (1− λ)Y ∈ Aρ.

(2) 凸性 (convexity)

X ,Y ∈ X , λ ∈ [0, 1] =⇒ ρ(λX +(1−λ)Y ) ≦λρ(X )+(1−λ)ρ(Y ).

(3) 準凸性 (quasi-convexity)

X ,Y ∈ X , λ ∈ [0, 1] =⇒ ρ(λX + (1− λ)Y ) ≦ max{ρ(X ), ρ(Y )}.

(1) =⇒ (2) : X ,Y ∈ X に対して, X̃ = X + ρ(X ), Ỹ = Y + ρ(Y )とおくと,

ρ(X̃ ) = ρ(X + ρ(X )) = ρ(X )− ρ(X ) = 0より X̃ ∈ Aρ, 同様に Ỹ ∈ Aρ となる.

λ ∈ [0, 1]に対して, λX̃ + (1− λ)Ỹ ∈ Aρ より,

0 ≧ ρ(λX̃ + (1− λ)Ỹ ) = ρ ({λX + (1− λ)Y }+ {λρ(X ) + (1− λ)ρ(Y )})
= ρ(λX + (1− λ)Y )− {λρ(X ) + (1− λ)ρ(Y )}.

(2) =⇒ (3) : X ,Y ∈ X , λ ∈ [0, 1]に対して,

ρ(λX +(1− λ)Y ) ≦λρ(X ) + (1− λ)ρ(Y )
≦λmax{ρ(X ), ρ(Y )}+ (1− λ)max{ρ(X ), ρ(Y )} = max{ρ(X ), ρ(Y )}.

(3) =⇒ (1) : X ,Y ∈ Aρ, λ ∈ [0, 1]とすると, max{ρ(X ), ρ(Y )} ≦ 0より,
ρ(λX + (1− λ)Y ) ≦ 0. よって, λX + (1− λ)Y ∈ Aρ.



リスクの数理

定義 (コヒーレントリスク尺度 (Coherent Risk Measure))

凸リスク尺度 ρ : X → Rがコヒーレントリスク尺度
def⇐⇒ Aρ が錐 i.e. X ∈ Aρ, λ ≧ 0 =⇒ λX ∈ Aρ.

X (ω1)

X (ω2)

O

A
錐 ×

X (ω1)

X (ω2)

O

A
錐 ◦



リスクの数理

命題 (同値条件)

(1) Aρ が錐 i.e. X ∈ Aρ, λ ≧ 0 =⇒ λX ∈ Aρ.

(2) 正斉次性 (positive homogeneity)

X ∈ X , λ ≧ 0 =⇒ ρ(λX ) = λρ(X ).

証明
(1) =⇒ (2) : X ∈ X , λ ≧ 0に対して, X̃ = X + ρ(X ) ∈ Aρ とおくと,

0 ≧ ρ(λX̃ ) = ρ(λX + λρ(X )) = ρ(λX )− λρ(X )

より ρ(λX ) ≦ λρ(X ). ここで, ρ(λX ) < λρ(X )と仮定すると, λ > 0であり,
k = ρ(X )− ρ(λX )/λ > 0とおくと,

0 = ρ(λX )− λρ(X ) + λk = ρ(λ{X + ρ(X )− k})
より, λ{X + ρ(X )− k} ∈ Aρ. ここで Aρ は錐より, X + ρ(X )− k ∈ Aρ だが,
これは ρ(X )− k ∈ Aρ(X ) = [ρ(X ),∞)で矛盾する. よって, ρ(λX ) = λρ(X ).

(2) =⇒ (1) : X ∈ Aρ, λ ≧ 0とすると, ρ(λX ) = λρ(X ) ≦ 0より λX ∈ Aρ.



リスクの数理

• ρ : X → R : リスク尺度.

(a) (凸性) ρ(λX + (1− λ)Y ) ≦ λρ(X ) + (1− λ)ρ(Y ) (λ ∈ [0, 1]).

(b) (正斉次性) ρ(λX ) = λρ(X ) (λ ≧ 0).

(c) (劣加法性 (subadditivity)) ρ(X + Y ) ≦ ρ(X ) + ρ(Y ).

定理

(1) (a), (b)が成り立てば, (c)も成り立つ.

(2) (b), (c)が成り立てば, (a)も成り立つ.

(3) X が次の条件をみたすとき, (c), (a)が成り立てば, (b)も成り立つ.

(条件 ) X ∈ X =⇒ |X | ∈ X .

証明

(1) ρ(X + Y ) = 2ρ

(
1

2
X +

1

2
Y

)
≦ 2

{
1

2
ρ(X ) +

1

2
ρ(Y )

}
= ρ(X ) + ρ(Y ).

(2) ρ(λX + (1− λ)Y ) ≦ ρ(λX ) + ρ((1− λ)Y ) = λρ(X ) + (1− λ)ρ(Y ).



リスクの数理

(a) (凸性) ρ(λX + (1− λ)Y ) ≦ λρ(X ) + (1− λ)ρ(Y ) (λ ∈ [0, 1]).

(b) (正斉次性) ρ(λX ) = λρ(X ) (λ ≧ 0).

(c) (劣加法性 (subadditivity)) ρ(X + Y ) ≦ ρ(X ) + ρ(Y ).

(c), (a) + ”X ∈ X =⇒ |X | ∈ X” =⇒ (b)

Step 1 λ ∈ [0, 1]のとき, ρ(λX ) ≦ λρ(X )が成り立つ.

(∵) (a)より, ρ(λX ) = ρ(λX + (1− λ)0) ≦ λρ(X ) + (1− λ)ρ(0) = λρ(X ).

Step 2 λ ≧ 1のとき, λρ(X ) ≦ ρ(λX )が成り立つ.

(∵) Step 1より, λρ(X ) = λρ(λ−1λX ) ≦ λλ−1ρ(λX ) = ρ(λX )となる.

Step 3 λ = n ≧ 1が整数のとき, (b)が成り立つ.

(∵) (c)より ρ(nX ) ≦ nρ(X )となるので, Step 2より ρ(nX ) = nρ(X )となる.

Step 4 λ ≧ 0が有理数のとき, (b)が成り立つ.

(∵) λ = 0のとき (b)は成り立つ. λ =
n

m
(m, n ≧ 1は整数)とする. Step 3と

1

m
ρ(X ) =

1

m
ρ

(
m

1

m
X

)
= ρ

(
1

m
X

)
より, ρ

( n

m
X
)
=

n

m
ρ(X )となる.



リスクの数理

(a) (凸性) ρ(λX + (1− λ)Y ) ≦ λρ(X ) + (1− λ)ρ(Y ) (λ ∈ [0, 1]).

(b) (正斉次性) ρ(λX ) = λρ(X ) (λ ≧ 0).

(c) (劣加法性 (subadditivity)) ρ(X + Y ) ≦ ρ(X ) + ρ(Y ).

(c), (a) + ”X ∈ X =⇒ |X | ∈ X” =⇒ (b)

Step 5 |ρ(X )− ρ(Y )| ≦ ρ(|X − Y |)が成り立つ. 特に, |ρ(X )| ≦ ρ(|X |).
(∵) ρ(X ) = ρ(Y + (X −Y )) ≦ ρ(Y ) + ρ(X −Y ) ≦ ρ(Y ) + ρ(|X −Y |) (∵ (c))
より, ρ(X )− ρ(Y ) ≦ ρ(|X − Y |)となる. 同様に, ρ(Y )− ρ(X ) ≦ ρ(|X − Y |)
となるため, |ρ(X )− ρ(Y )| ≦ ρ(|X − Y |)が成り立つ.

Step 6 実数 λ ≧ 0に対して, (b)が成り立つ.

(∵) limn→∞ λn = λとなる有理数 λn ≧ 0 (ただし, |λn − λ| ≦ 1)の列をとると,

|λρ(X )−ρ(λX )| ≦ |λρ(X )−λnρ(X )|+ |λnρ(X )−ρ(λnX )|+ |ρ(λnX )−ρ(λX )|.

· |λρ(X )− λnρ(X )| = |λ− λn||ρ(X )| ≦ |λ− λn| ρ(|X |) (∵ Step 5).

· |λnρ(X )− ρ(λnX )| = 0 (∵ Step 4).

· |ρ(λnX )− ρ(λX )| ≦ ρ(|λn − λ||X |) ≦ |λn − λ| ρ(|X |) (∵ Step 5, Step 1).

∴ |λρ(X )− ρ(λX )| ≦ 2|λn − λ|ρ(|X |) → 0 (n → ∞). よって, (b)が成り立つ.



リスクの数理

• X : Ω→ R : 確率変数.

· FX : R→ R, FX (x) :=P(X ≦ x)=P({ω ∈ Ω | X (ω) ≦ x}) : 分布関数.

· FX (x−) := P(X < x) (x ∈ R) とおく.

定義 (分位 (Quantile))

(1) q ∈ Rが X の s–分位 (s ∈ (0, 1))
def⇐⇒ FX (q−) ≦ s ≦ FX (q).

(2) qX : (0, 1)→ Rが X の分位関数 def⇐⇒ FX (qX (s)−)≦s≦FX (qX (s)).

x

y

O

1

y = FX (x) : 右連続, 単調増加

lim
x→−∞

FX (x) = 0, lim
x→+∞

FX (x) = 1.



リスクの数理

qX : (0, 1)→ Rが X の分位関数 def⇐⇒ FX (qX (s)−) ≦ s ≦ FX (qX (s)).

定義 (上方分位関数)

q+X : (0, 1)→ R, q+X (s) = max{x ∈ R | F (x−) ≦ s} : 上方分位関数.

x

y

O

1

y = FX (x)

x

y

O

1

x = qX (y) : 単調増大

x

y

O

1

x = q+
X (y)



リスクの数理

• ρ : X = L0(X )→ R, ρ(X ) = VaRs(X ).

定義 (バリューアットリスク (Value at Risk))

VaRs(X ) = −q+X (s) : 信頼水準 s ∈ (0, 1)のバリューアットリスク.

• VaRs(X ) =−max{x ∈ R | F (x−) ≦ s}
= min{−x ∈ R | P(X < x) ≦ s}
= min{m ∈ R | P(X +m < 0) ≦ s}.

x

y

O

確率 s

−VaRs(X )

X の確率密度関数



リスクの数理

• ρ(X ) = VaRs(X ) = min{m ∈ R | P(X +m < 0) ≦ s}.

Aρ := {X ∈ X | ρ(X ) ≦ 0}= {X ∈ X | P(X < 0) ≦ s}.

A ⊂ X : 受容集合 (acceptance set)
def⇐⇒

(0) A ∩ R = [0,∞).

(1) X ∈ A, Y ∈ X , P(X ≦ Y ) = 1 =⇒ Y ∈ A.

(2) X ∈ X =⇒ A(X ) := {m ∈ R | X +m ∈ A} = [ρ(X ),∞).

(a) (凸) X ,Y ∈ A, λ ∈ [0, 1] =⇒ λX + (1− λ)Y ∈ A.

(b) (錐) X ∈ A, λ ≧ 0 =⇒ λX ∈ A.

• ρ = VaRs に対して, Aρ は受容集合で錐である.

ただし, 一般に Aρ は凸ではない.



リスクの数理

• ρ(X ) = VaRs(X ) = min{m ∈ R | P(X +m < 0) ≦ s}.

(凸) X ,Y ∈ X , λ ∈ [0, 1] =⇒ ρ(λX +(1−λ)Y ) ≦λρ(X )+ (1−λ)ρ(Y ).

例 X ,Y : Ω→ R : 互いに独立で次をみたす確率変数 (p = 0.03, n > 0):

P(X = −n) = P(Y = −n) = p, P(X = 0) = P(Y = 0) = 1− p.

←− デフォルト確率が 3%の 2銘柄の債券.

s = 0.05に対して, VaRs(X ) = VaRs(Y ) = 0である.

一方, Z = 1
2 (X + Y )のとき,

P(Z < α) =

{
p2 = 0.0009 < s (−n < α ≦ − n

2 )

1− (1− p)2 = 0.0591 > s (− n
2 < α ≦ 0).

よって, VaRs(
1
2 (X + Y )) = n

2 > 0である. 特に, VaRs は凸ではない.

問題点

• nに応じて損失があるにも関わらず, VaRs には反映されていない.

• 複数銘柄を用いてリスクヘッジをしても, VaRs は逆に大きくなる.



リスクの数理

• ρ : X = L1(X )→ R, ρ(X ) = AVaRs(X ).

定義 (平均バリューアットリスク (Average Value at Risk))

信頼水準 t ∈ (0, 1]の平均バリューアットリスクを次で定める :

AVaRt(X ) =
1

t

∫ t

0

VaRs(X )ds.

条件付きバリューアットリスク (conditional value at risk)や期待ショー
トフォール (expected shortfall)と呼ぶこともある.

VaRs(X ) = −q+X (s) = min{m ∈ R | P(X +m < 0) ≦ s}.

例 1 lim
t↘0

AVaRt(X ) = inf{m | P(X +m < 0) ≦ 0} = −ess inf X ≦ +∞.

例 2 AVaR1(X ) = E [−X ] (後ほど確認する).

• (VaRs(X )と同様に) AVaRt(X )も正斉次なリスク尺度である.



リスクの数理

記号 Rt = {Z ∈ L0(Ω) | 0 ≦ Z ≦ 1,E [Z ] = t}.

定理

AVaRt(X ) =
1

t
sup{E [−XZ ] | Z ∈ Rt} =

1

t
max{E [−XZ ] | Z ∈ Rt}.

系

ρ = AVaRt : X → Rはコヒーレントリスク尺度である.

証明 ρの凸性を示せばよい. X ,Y ∈ X , λ ∈ [0, 1]と Z ∈ Rt に対して,

1

t
E [−{λX + (1− λ)Y }Z ] =λ

1

t
E [−XZ ] + (1− λ)

1

t
E [−YZ ]

≦λAVaRt(X ) + (1− λ)AVaRt(Y ).

Z ∈ Rt は任意なので,

AVaRt(λX + (1− λ)Y ) ≦ λAVaRt(X ) + (1− λ)AVaRt(Y ).

定理証明のポイント
1 分位関数 qX (s)の分布.

2 Neyman-Pearson の補題.



リスクの数理

qX : (0, 1)→ Rが X の分位関数 def⇐⇒ FX (qX (s)−) ≦ s ≦ FX (qX (s)).

注 x < y =⇒ FX (x) ≦ FX (y−) ≦ FX (y).

命題 (分位関数の分布)

U : Ω→ R : 確率変数 ∼ U(0, 1) i.e. P(U ≦ x) = x (x ∈ (0, 1)) =⇒
Y : Ω→ R, Y (ω) := qX (U(ω))に対して, FX = FY である.

証明 · s < FX (s)のとき, FX (qX (s)−) ≦ s < FX (s)より, qX (s) ≦ x .

· qX (s) ≦ x のとき, s ≦ FX (qX (s)) ≦ FX (x).

よって, (0,FX (x)) ⊂ {s ∈ (0, 1) | qX (s) ≦ x} ⊂ (0,FX (x)]より,

FX (x) =P(U ∈ (0,FX (x))) ≦ P(U ∈ {s ∈ (0, 1) | qX (s) ≦ x})
≦P(U ∈ (0,FX (x)]) = FX (x). ∴ FX (x) = P(Y ≦ x).

系

E [f (X )] =

∫ 1

0

f (qX (s))ds (f : R→ R :可測関数).

例 2 (再掲) AVaR1(X ) =

∫ 1

0

−q+X (s)ds = E [−X ].



リスクの数理

• Z 0 : Ω → Rを Z 0 = I{X<c} + κI{X=c} で定める. ただし,

c = qX (t) : X の t-分位, κ =


t − P(X < c)

P(X = c)
(P(X = c) > 0)

0 (P(X = c) = 0).

注 P(X < c) ≦ t ≦ P(X ≦ c) ⇝ P(X = c) = 0のとき, P(X < c) = t.

命題 (Neyman-Pearson の補題)

(1) Z 0 ∈ Rt = {Z ∈ L0(Ω) | 0 ≦ Z ≦ 1,E [Z ] = t}.
(2) sup{E [−XZ ] | Z ∈ Rt} = max{E [−XZ ] | Z ∈ Rt} = E [−XZ 0].

証明
(1) 0 ≦ κ ≦ 1である. 実際, P(X = c) > 0のときは, 注より,

0 ≦ κ =
t − P(X < c)

P(X = c)
≦ P(X ≦ c)− P(X < c)

P(X = c)
=

P(X = c)

P(X = c)
= 1.

よって, 0 ≦ Z 0 ≦ 1. また, E [Z 0] = P(X < c) + κP(X = c) = t が成り立つ.
よって, Z 0 ∈ Rt が示される.

(2) Z ∈ Rt に対して E [−XZ ] ≦ E [−XZ 0]を示せばよい. W = Z 0 − Z とおく.
このとき, (c − X )W ≧ 0, E [W ] = 0より,

E [−XZ 0]− E [−XZ ] = E [−XW ] ≧ −cE [W ] = 0.



リスクの数理

• Z 0 : Ω → R, Z 0 = I{X<c} + κI{X=c}. ただし,

c = qX (t) : X の t-分位, κ =


t − P(X < c)

P(X = c)
(P(X = c) > 0)

0 (P(X = c) = 0).

注 P(X = c) = 0のとき, P(X < c) = t.

AVaRt(X ) := −1

t

∫ t

0

q+
X (s)ds =

1

t
max{E [−XZ ] | Z ∈ Rt}.

証明

qX (s) = q+
X (s)とおく. qX (s)は単調増大なので,

−
∫ t

0

qX (s)ds =

∫ t

0

(c − qX (s))ds − c t =

∫ 1

0

(c − qX (s))I{qX<c}ds − c t

=E [(c − X )I{X<c}]− c t = E [−X I{X<c}]− c{t − P(X < c)}

=E [−X I{X<c}]− cκP(X = c) = E [−XZ 0].

よって, Neyman-Pearson の補題より示される.
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